How I customize self attention layer for identifying wafer defects?

13 次查看(过去 30 天)
how I used customize multi head self attention in the CNN network for detecting wafer defects ? please explain with example

采纳的回答

Shantanu Dixit
Shantanu Dixit 2024-7-15
Hi Sharith,
It is my understanding that you want to add and customize self-attention in the CNN network for detecting wafer defects.
You can define a CNN-based architecture and add a self-attention layer in the end using ‘selfAttentionLayer’. The function takes in two parameters, i.e, ‘NumHeads’ and ‘NumKeyChannels’ using which you can change the number of heads and the dimensions of key vector.
Below is a reference code for the model architecture:
layers = [
imageInputLayer([28 28 1], 'Name', 'input')
convolution2dLayer(3, 16, 'Padding', 'same', 'Name', 'conv1')
batchNormalizationLayer('Name', 'bn1')
reluLayer('Name', 'relu1')
maxPooling2dLayer(2, 'Stride', 2, 'Name', 'maxpool1')
convolution2dLayer(3, 32, 'Padding', 'same', 'Name', 'conv2')
batchNormalizationLayer('Name', 'bn2')
reluLayer('Name', 'relu2')
flattenLayer('Name', 'flatten')
selfAttentionLayer(4, 32, 'Name', 'self_attention')
fullyConnectedLayer(10, 'Name', 'fc')
softmaxLayer('Name', 'softmax')
classificationLayer('Name', 'output')
];
The above code defines a CNN based architecture incorporating Multi headed self-attention (MHSA) for ten class classification.
Refer to the below MathWorks documentation for more information:
  1 个评论
Sharith Dhar
Sharith Dhar 2024-7-15
Thanks for response , but i want to modify self attention layer properties QueryWeights, KeyWeights, ValueWeights, OutputWeight in that case what is the MATLAB code?

请先登录,再进行评论。

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Image Data Workflows 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by