3D integration over a region bounded by some planes.

3 次查看(过去 30 天)
I want to perform 3D integrations of some functions over a region defined by the following 14 planes. As an example, consider the function . The region is bounded by:
  • 2 planes parallel to yz-plane at and .
  • 2 planes parallel to xz-plane at and .
  • 2 planes parallel to xy-plane at and .
  • 8 planes which are penpendicular to the vectors - given in below code at mid point of these vector ().
Code to visulize the last 8 planes. First 6 planes are quite eays to imagine.
clear; clc;
figure; hold on;
axis([-1 1 -1 1 -1 1])
% function to calculate the 8 vectors:
f = @(vec) vec(1)*[-1 1 1] + vec(2)*[1 -1 1] + vec(3)*[1 1 -1];
% 8 vectors:
v1 = f([1, 1, 1]);
v2 = f([-1, -1, -1]);
v3 = f([0, 1, 0]);
v4 = f([0, -1, 0]);
v5 = f([0, 0, 1]);
v6 = f([0, 0, -1]);
v7 = f([1, 0, 0]);
v8 = f([-1, 0, 0]);
% draw planes perpendicular to v vectors at v/2 point:
draw_plane(v1)
draw_plane(v2)
draw_plane(v3)
draw_plane(v4)
draw_plane(v5)
draw_plane(v6)
draw_plane(v7)
draw_plane(v8)
xlabel('x');
ylabel('y');
zlabel('z');
box on;
set(gca,'fontname','times','fontsize',16)
view([-21 19])
hold off;
function [] = draw_plane(v)
% I took this algorithem from ChatGPT to draw a plane perpendicular to v
plane_size = 3;
midpoint = v./2;
normal_vector = v / norm(v);
perpendicular_vectors = null(normal_vector)';
[t1, t2] = meshgrid(linspace(-plane_size, plane_size, 100));
plane_points = midpoint + t1(:) * perpendicular_vectors(1,:) + t2(:) * perpendicular_vectors(2,:);
X = reshape(plane_points(:,1), size(t1));
Y = reshape(plane_points(:,2), size(t1));
Z = reshape(plane_points(:,3), size(t1));
surf(X, Y, Z, 'FaceAlpha', 0.5, 'EdgeColor', 'none');
plot3(midpoint(1), midpoint(2), midpoint(3), 'go', 'MarkerSize', 10, 'MarkerFaceColor', 'g');
text(midpoint(1), midpoint(2), midpoint(3), ['(',num2str(v(1)),',',num2str(v(2)),',',num2str(v(3)),')']);
end
  4 个评论
Torsten
Torsten 2024-8-8
Can you provide the region you want to integrate over as a system of linear inequalities ?
Or do you have another method to decide whether a point in [-1,1]x[-1,1]x[-1,1] lies in the region you want to integrate over ?
E.g. [-1,1]x[-1,1]x[-1,1] could be given as
x>=-1
y>=-1
z>=-1
x<=1
y<=1
z<=1
Luqman Saleem
Luqman Saleem 2024-8-8
编辑:Luqman Saleem 2024-8-8
Yes I think the region bounded by these planes is:
equ1 = x <= 1;
equ2 = x >= -1;
equ3 = y <= 1;
equ4 = y >= -1;
equ5 = z <= 1;
equ6 = z >= -1;
equ7 = x + y + z <= 3/2;
equ8 = x + y + z >= -3/2;
equ9 = x - y + z <= 3/2;
equ10 = x - y + z >= -3/2;
equ11 = x + y - z <= 3/2;
equ12 = x + y - z >= -3/2;
equ13 = -x + y + z <= 3/2;
equ14 = -x + y + z >= -3/2;

请先登录,再进行评论。

采纳的回答

Torsten
Torsten 2024-8-8
编辑:Torsten 2024-8-8
f = @(x,y,z)x.^2+y+2*z;
N = [100,1000,10000,100000,1000000,10000000,100000000];
Fi = zeros(numel(N),1);
Fo = Fi;
for i = 1:numel(N)
n = N(i);
x = -1+2*rand(n,1);
y = -1+2*rand(n,1);
z = -1+2*rand(n,1);
idx = x+y+z<=1.5 & x+y+z>=-1.5 & x-y+z<=1.5 & x-y+z>=-1.5 & ...
x+y-z<=1.5 & x+y-z>=-1.5 & -x+y+z<=1.5 & -x+y+z>=-1.5;
Fi(i) = 8*sum(f(x(idx),y(idx),z(idx)))/n; % 8 is the volume of [-1,1]x[-1,1]x[-1,1]
idx = ~idx;
Fo(i) = 8*sum(f(x(idx),y(idx),z(idx)))/n; % 8 is the volume of [-1,1]x[-1,1]x[-1,1]
end
Fi+Fo
ans = 7x1
0.1365 2.9963 2.7342 2.7236 2.6703 2.6643 2.6667
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
plot(1:numel(N),[Fi,Fo,Fi+Fo])
grid on
integral3(f,-1,1,-1,1,-1,1)
ans = 2.6667
f = @(x,y,z)(x.^2+y+2*z).*...
(x+y+z<=1.5).*(x+y+z>=-1.5).*(x-y+z<=1.5).*(x-y+z>=-1.5).*...
(x+y-z<=1.5).*(x+y-z>=-1.5).*(-x+y+z<=1.5).*(-x+y+z>=-1.5);
integral3(f,-1,1,-1,1,-1,1)
Warning: Reached the maximum number of function evaluations (10000). The result fails the global error test.
Warning: The integration was unsuccessful.
ans = NaN
For the details, take a look at

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Logical 的更多信息

产品


版本

R2024a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by