Getting error message when running Runge Kutta solution...
5 次查看(过去 30 天)
显示 更早的评论
The code that produces the errors is below:
clc;
mass = 13.5;
Jx = 0.8244;
Jy = 1.135;
Jz = 1.759;
Jxz = 0.1204;
G = Jx*Jz-Jxz^2;
G1 = Jxz*(Jx - Jy + Jz)/G;
G2 = (Jz*(Jz-Jy)+Jxz^2)/G;
G3 = Jz/G;
G4 = Jxz/G;
G5 = (Jz-Jx)/Jy;
G6 = Jxz/Jy;
G7 = ((Jx-Jy)*Jx +Jxz^2)/G;
G8 = (Jx/G);
p = 0;
q = 0;
r = 0;
l = 0.0000;
m = 0.0000;
n = 0.0000;
tspan = [0 10];
%[t,q] = ode45(@(t,q) (G5*p*r-G6*(p^2-r^2)+m/Jy), tspan,0);
%plot(t,q);
%pdot = (G1*p*q-G2*q*r + G3*l+G4*n);
[t,p]=ode45(@(t,p) (G1*p*q - G2*q*r + G3*l + G4*n),[0 10], 0.1);
plot(t,p,'--r');
disp(p);
disp(t);
[t,q] = ode45(@(t,r) (G5*p*r - G6*p*p - G6*r*r + m/Jy), [0 10],0);
plot(t,q,'--g');
[t,r] = ode45(@(t,r) (G7*p*q - G1*q*r + G4*l + G8*n), [0 10],0);
plot(t,r,'--b')
The output with the error messages follows:
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0
0.2500
0.5000
0.7500
1.0000
1.2500
1.5000
1.7500
2.0000
2.2500
2.5000
2.7500
3.0000
3.2500
3.5000
3.7500
4.0000
4.2500
4.5000
4.7500
5.0000
5.2500
5.5000
5.7500
6.0000
6.2500
6.5000
6.7500
7.0000
7.2500
7.5000
7.7500
8.0000
8.2500
8.5000
8.7500
9.0000
9.2500
9.5000
9.7500
10.0000
Error using *
Incorrect dimensions for matrix multiplication. Check that the number of columns in the first matrix matches the number of rows in the second matrix. To
perform elementwise multiplication, use '.*'.
Error in test>@(t,r)(G5*p*r-G6*p*p-G6*r*r+m/Jy) (line 30)
[t,q] = ode45(@(t,r) (G5*p*r - G6*p*p - G6*r*r + m/Jy), [0 10],0);
Error in odearguments (line 90)
f0 = feval(ode,t0,y0,args{:}); % ODE15I sets args{1} to yp0.
Error in ode45 (line 115)
odearguments(FcnHandlesUsed, solver_name, ode, tspan, y0, options, varargin);
Error in test (line 30)
[t,q] = ode45(@(t,r) (G5*p*r - G6*p*p - G6*r*r + m/Jy), [0 10],0);
0 个评论
回答(1 个)
Star Strider
2024-8-22
I’m not certain what you’re modeling. First, using norm to return a scalar solves the first problem of the differential equaton returning a (41x1) vector, however in the expression after that, ‘p’ is (41x1) and ‘q’ is (49x1). You will have to figure out what you want to do with them, and where the error is.
clc;
mass = 13.5;
Jx = 0.8244;
Jy = 1.135;
Jz = 1.759;
Jxz = 0.1204;
G = Jx*Jz-Jxz^2;
G1 = Jxz*(Jx - Jy + Jz)/G;
G2 = (Jz*(Jz-Jy)+Jxz^2)/G;
G3 = Jz/G;
G4 = Jxz/G;
G5 = (Jz-Jx)/Jy;
G6 = Jxz/Jy;
G7 = ((Jx-Jy)*Jx +Jxz^2)/G;
G8 = (Jx/G);
p = 0;
q = 0;
r = 0;
l = 0.0000;
m = 0.0000;
n = 0.0000;
tspan = [0 10];
%[t,q] = ode45(@(t,q) (G5*p*r-G6*(p^2-r^2)+m/Jy), tspan,0);
%plot(t,q);
%pdot = (G1*p*q-G2*q*r + G3*l+G4*n);
[t,p]=ode45(@(t,p) (G1.*p.*q - G2.*q.*r + G3.*l + G4.*n),[0 10], 0.1);
plot(t,p,'--r');
disp(p);
disp(t);
[t,q] = ode45(@(t,r) norm(G5.*p.*r - G6.*p.*p - G6.*r.*r + m./Jy), [0 10],0);
plot(t,q,'--g');
G7
p
q
G7.*p.*q
G1.*q.*r
G4.*l
G8.*n
de(t,r)
[t,r] = ode45(@(t,r) (G7.*p.*q - G1.*q.*r + G4.*l + G8.*n), [0 10],0);
plot(t,r,'--b')
.
0 个评论
另请参阅
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!