2nd Order Polynomial Coefficient Solving

6 次查看(过去 30 天)
I have been having very good success with guidance from the community with using Curve Fitter. I now would like to produce coefficients with an added variable.
I have the Data for R,S,P,T.
T = a + b*P + c*S + d*S^2 + e*(S*P) + f*(S^2*P)
Trying to find coefficients a,b,c,d,e,f.
The coefficients would a median seperated by 'R' breakpoints [550 725 950] , so realistically I would have a 6x3 matrix of coefficients.
At the moment linear regression will work, but the affect of P on T is linear, and the affect of R and S on T is non-linear in reality.
I have a 63000 x 4 matrix for data.
R S P T
716 28.5000000000000 291.727272727300 184.407961051320
721 28.5000000000000 291.625000000000 187.140145995908
721 28.5000000000000 291.625000000000 187.220504376631
722.5 28.5000000000000 291.625000000000 187.140145995908
722.5 28.5000000000000 291.625000000000 187.140145995908
I tried this along with a couple other methods to no avail.
Ignore the column indices, that was another iteration from the above data.
TRQ1 = @(c,VAR) c(1).*VAR(:3) + c(2) + c(3).*VAR(:,2) + c(4).*VAR(:,4) + c(5).*VAR(:,5) + c(6).*VAR(:,6);
F_TRQ= linsolve(VAR(:,[1 3] ) , TRQ, TRQ1)

采纳的回答

Torsten
Torsten 2024-8-29
编辑:Torsten 2024-8-29
I don't see R in your regression equation
T = a + b*P + c*S + d*S^2 + e*(S*P) + f*(s^2*P)
And I assume that "s" means "S".
M = [ones(63000,1),P,S,S.^2,S.*P,S.^2.*P];
y = T;
x = M\y;
a = x(1)
b = x(2)
c = x(3)
d = x(4)
e = x(5)
f = x(6)
  11 个评论
Torsten
Torsten 2024-8-31
Thank you.
You get 6 coefficients. The first coefficient depends on R. The regression equation solved above is
T = x(1) + x(4)*P + x(5)*S + x(6)*S^2 + x(7)*(S*P) + x(8)*(S^2*P) if R <= 550
T = x(2) + x(4)*P + x(5)*S + x(6)*S^2 + x(7)*(S*P) + x(8)*(S^2*P) if R > 550 & R <=725
T = x(3) + x(4)*P + x(5)*S + x(6)*S^2 + x(7)*(S*P) + x(8)*(S^2*P) if R > 725
Eric
Eric 2024-9-1
Thank you so much. I will now keep my head down and keep working on learning.

请先登录,再进行评论。

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Support Vector Machine Regression 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by