I'm trying to solve a 2nd order ode with ode45, but have no idea where to start.
5 次查看(过去 30 天)
显示 更早的评论
This the ode with conditions I'm trying to solve and the code below is as far as I got. It would be appreciated if I could get a detailed step by step to help solve this.
%initial conditions
y0 = [0 1];
tspan = [1 4];
0 个评论
采纳的回答
Milan Bansal
2024-9-10
编辑:Milan Bansal
2024-9-10
Hi Jhryssa,
Here is how you can solve the given ODE.
Convert the second-order ODE into a system of first-order ODEs: MATLAB's ode45 solver is designed for systems of first-order ODEs, so you will need to rewrite the second-order ODE into a system of two first-order equations.
The given ODE is:
with the initial conditions and
Introduce new variables: Let . Then, the system of first-order equations becomes:
Set up initial conditions: From the problem, and .
Here is the MATLAB implementaion:
% Define the system of first-order ODEs
function dydt = ode_system(t, y)
dydt = zeros(2,1);
dydt(1) = y(2);
dydt(2) = (2*y(1) - t^2*y(2)) / t;
end
% Set initial conditions
y0 = [0; 1]; % y(1) = 0, y'(1) = 1
% Time span (t = 1 to t = 4)
tspan = [1 4];
% Solve the ODE using ode45
[t, y] = ode45(@ode_system, tspan, y0);
% Plot the result
plot(t, y(:,1))
xlabel('t')
ylabel('y(t)')
title('Solution of the ODE')
Please refer to the documentation link to learn more about ode45.
Hope this helps!
更多回答(1 个)
Torsten
2024-9-10
After dividing your equation by t, you can just follow the example
Solve Nonstiff Equation
under
0 个评论
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Ordinary Differential Equations 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!