How to get to Power Spectral Density from Power spectrum as shown in figure

4 次查看(过去 30 天)
fsine=10e6;
L=10;
PS=0.2;
A=7.85e-11;
c=3e8;
dt=2e-12;
V=1;
n=1.45; %Index of refraction
eps0=8.854e-12; % [F/m] Vacuum permittivity
T=10*2*L*n/c; %Total time
Nt=round(T/dt);
t = (-T/2/dt:1:T/2/dt)*dt; %time axis
nu=(-1/2/dt:1/T:1/2/dt); %frequency axis
I1_0=PS/A;
sine = V*sin(2*pi*fsine*t); %phase modulation condition
phi=sine;
ES_0t=sqrt(I1_0/2/n/c/eps0)*exp((1i*(pi)*phi)); % Original signal in time
Power=trapz(t,2*n*c*eps0*A*abs(ES_0t).^2)/T; % Area under the curve in time domain
FFt_EL0t=fftshift(abs(fft(ES_0t/Nt))); % fourier transform of the original signal
Power_FFt=T*trapz(nu,2*n*c*eps0*A*(FFt_EL0t).^2); % Area under the curve in frequency domain
figure;plot(nu,10*log10(2*n*c*eps0*A*(FFt_EL0t).^2)./1e-3);
xlim([-100e6 100e6]);
ylabel('Power[dBm]');
xlabel('frequency[Hz]');
The idea was to obtain PSD exactly like the second figure but I cannot understand what to change in the above code.I have converted Power units from W to dBm but evidently that is of no use.
Any suggestions will be greatly appreciated.
Thank you

回答(1 个)

dpb
dpb 2024-9-19
编辑:dpb 2024-9-19
fsine=10e6;
L=10;
PS=0.2;
A=7.85e-11;
c=3e8;
dt=2e-12;
V=1;
n=1.45; %Index of refraction
eps0=8.854e-12; % [F/m] Vacuum permittivity
T=10*2*L*n/c; %Total time
Nt=round(T/dt);
t = (-T/2/dt:1:T/2/dt)*dt; %time axis
nu=(-1/2/dt:1/T:1/2/dt); %frequency axis
I1_0=PS/A;
sine = V*sin(2*pi*fsine*t); %phase modulation condition
phi=sine;
ES_0t=sqrt(I1_0/2/n/c/eps0)*exp((1i*(pi)*phi)); % Original signal in time
Power=trapz(t,2*n*c*eps0*A*abs(ES_0t).^2)/T; % Area under the curve in time domain
FFt_EL0t=fftshift(abs(fft(ES_0t/Nt))); % fourier transform of the original signal
Power_FFt=T*trapz(nu,2*n*c*eps0*A*(FFt_EL0t).^2); % Area under the curve in frequency domain
figure;
semilogy(nu/1E6,2*n*c*eps0*A*(FFt_EL0t).^2);
xlim([-1 1]*1E2)
ylabel('Amplitude');
xlabel('frequency [MHz]');
will scale to log y axis. Nothing can do about the shape of the spectrum; that's wholly dependent upon the characteristics of the time trace.

类别

Help CenterFile Exchange 中查找有关 Fourier Analysis and Filtering 的更多信息

标签

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by