Is the computation of Beta correct ? Please could anyone correct the codes based on the equations ?
70 次查看(过去 30 天)
显示 更早的评论
My code for Beta along with the values :
function beta_n_values = Beta(n, d)
% Beta function to calculate Beta^n(k - d)
% n: Degree of the polynomial
% d: Interpolation point as a random variable with |d| < 0.5
% Calculate the lower and upper bounds of k
k0 = ceil(d - (n + 1) / 2);
k1 = floor(d + (n + 1) / 2);
% Define the range of k values
k_values = k0:k1;
% Pre-compute the coefficients a_p(k) for each k using the calculate_ap function
a_p_values = calculate_ap(n, d); % Make sure the calculate_ap function is defined
% Initialize an array to store the values of Beta^n(k - d)
beta_n_values = zeros(size(k_values));
% Loop over each k in k_values to compute Beta^n(k - d)
for k_idx = 1:length(k_values)
k = k_values(k_idx);
% Initialize the sum for this k
beta_n_k = 0;
% Loop over p from 0 to n
for p = 0:n
% Get the coefficient a_p(k) from the precomputed matrix a_p_values
a_p_k = a_p_values(p+1, k_idx); % MATLAB indexing starts from 1, so use p+1
% Add the term a_p(k) * d^p to the sum
beta_n_k = beta_n_k + a_p_k * d^p;
end
% Store the computed value of Beta^n(k - d)
beta_n_values(k_idx) = beta_n_k;
end
% Display the computed Beta^n(k - d) values
disp('Computed Beta^n(k - d) values:');
disp(beta_n_values);
end
% Input the degree of the polynomial
n = input('Enter the degree (n): '); % Example: n = 3;
% Generate a random interpolation point d with |d| < 0.5
num_points = 1;
d = -0.5 + (0.5 - (-0.5)) * rand(num_points, 1);
a_p_values = calculate_ap(n, d);
disp('The computed a_p^k values are:');
disp(a_p_values);
beta_n_values = Beta(n, d);
disp('Computed Beta^n(k - d) values:');
disp(beta_n_values);
The solution for a_p and beta is :
>> SplineCalculation
Enter the degree (n): 3
Calculated a_p(k) values:
0.6667 0.6667 0.6667 0.6667
-1.0000 -1.0000 -1.0000 -1.0000
0.5000 0.5000 0.5000 0.5000
0 0 0 0
Computed Beta^n(k - d) values:
0.3432 0.3432 0.3432 0.3432
The code for function a_p:
function a_p_values = calculate_ap(n, d)
% n: Degree of the polynomial
% d: Interpolation point as a random variable with |d| < 0.5
% Define the range for p (0 to n)
p_values = 0:n;
% Calculate the lower and upper bounds of k
k0 = ceil(d - (n + 1) / 2);
k1 = floor(d + (n + 1) / 2);
% Define the range for k
k_values = k0:k1;
% Initialize a matrix to store a_p(k) values
a_p_values = zeros(length(p_values), length(k_values));
% Loop through each value of p to compute a_p for each k
for p_idx = 1:length(p_values)
p = p_values(p_idx);
% Calculate the binomial coefficient (n choose p)
binomial_np = nchoosek(n, p);
% Calculate the factorial term 1/n!
n_factorial_term = 1 / factorial(n);
% Loop through each value of k
for k_idx = 1:length(k_values)
k = k_values(k_idx);
% Initialize the sum for this combination of p and k
sum_result = 0;
% Sum over m from 0 to n+1
for m = 0:n+1
% Calculate the binomial coefficient (n+1 choose m)
binomial_n1m = nchoosek(n+1, m);
% Calculate the term (-1)^m
sign_term = (-1)^m;
% Calculate the term (n+1)/2 - m
difference_term = (n+1) / 2 - m;
% Calculate the term (difference_term)^(n-p)
power_term = difference_term^(n - p);
% Calculate the Heaviside function mu(p - m + (n+1)/2)
mu_term = heaviside(p - m + (n+1)/2);
% Add the current term to the sum
sum_result = sum_result + binomial_n1m * sign_term * power_term * mu_term;
end
% Calculate a_p(k) for the current p and k
a_p_values(p_idx, k_idx) = n_factorial_term * binomial_np * sum_result;
end
end
% Display the calculated a_p(k) values
disp('Calculated a_p(k) values:');
disp(a_p_values);
end
Is the code correct cause all are convolutions basically
回答(0 个)
另请参阅
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!