- Use 'lsqnonlin' to minimize the error between the actual and computed trajectory.
- Replace symbolic calculations with numeric solvers like 'fsolve' to improve the performance and convergence speed.
- Ensure that (x,y) coordinates are calculated for each input angle using accurate loop-closure equations.
- Provide good initial guesses for the solver, as they are crucial for ensuring convergence.
Optimization linkage of Six bar Stephenson III mechanism
8 次查看(过去 30 天)
显示 更早的评论
i want to optimize a MATLAB code to find link length of six bar mechanism by input a trajectry path (angle , x,y coordinate )
input data
% Knee Flexion Angle (°) vs. x(mm) and y(mm)
angle = [10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100];
x = [26.6 30.5 32.2 32 31.3 31.4 32.3 35.1 37.3 35 28.9 20.9 13.3 7.9 5.7 2.6 -0.3 -1 0];
y = [75.5 73.6 67.6 60.6 54.8 50.8 47.1 43 36.2 25.7 14.1 4.2 -2.6 -6.2 -7 -6.8 -5.4 -2.9 0];
% Plot the data
figure;
plot(x, y, 'o-', 'LineWidth', 2, 'MarkerSize', 6, 'MarkerFaceColor', 'b');
grid on;
xlabel('x (mm)');
ylabel('y (mm)');
title('ICR Coordinates Plot');
axis equal;
2.. Mechanism Derivation
%% Define Desired Coupler Point Equations
% Define symbolic variables
syms Cx1 Cx2 Cx3 Cx4 Cx5 Cx6 Cx7 Cx8
syms Cy1 Cy2 Cy3 Cy4 Cy5 Cy6 Cy7 Cy8
syms Px1 Px2 Px3 Px4 Px5 Px6 Px7 Px8
syms Py1 Py2 Py3 Py4 Py5 Py6 Py7 Py8
syms Sx1 Sx2 Sx3 Sx4 Sx5 Sx6 Sx7 Sx8
syms Sy1 Sy2 Sy3 Sy4 Sy5 Sy6 Sy7 Sy8
% Coupler Point Equations
eq1 = [Cx1; Cx2; Cx3; Cx4; Cx5; Cx6; Cx7; Cx8] == ...
[Px1; Px2; Px3; Px4; Px5; Px6; Px7; Px8] + ...
[Sx1; Sx2; Sx3; Sx4; Sx5; Sx6; Sx7; Sx8]; % Equation 12a
eq2 = [Cy1; Cy2; Cy3; Cy4; Cy5; Cy6; Cy7; Cy8] == ...
[Py1; Py2; Py3; Py4; Py5; Py6; Py7; Py8] + ...
[Sy1; Sy2; Sy3; Sy4; Sy5; Sy6; Sy7; Sy8]; % Equation 12b
% Substitute Coupler Points
Cx = x; % Coupler x-coordinates
Cy = y; % Coupler y-coordinates
eq1_sub = subs(eq1, [Cx1, Cx2, Cx3, Cx4, Cx5, Cx6, Cx7, Cx8], Cx');
eq2_sub = subs(eq2, [Cy1, Cy2, Cy3, Cy4, Cy5, Cy6, Cy7, Cy8], Cy');
%% Define Symbolic Variables for Mechanism Analysis
syms r1 r2 r3 r4 r5 r6 r7 r8 phi3 phi4 phi6 phi7 phi8
%% Loop 1 Closure Equations (Four-Bar Mechanism)
% Real and Imaginary Parts
eqn_real = r1*cos(phi2) + r2*cos(phi3) == r3*cos(phi4) + r4;
eqn_imag = r1*sin(phi2) + r2*sin(phi3) == r3*sin(phi4);
% Freudenstein Coefficients
C1 = r4 / r1;
C2 = r4 / r3;
C3 = (r1^2 + r3^2 + r4^2 - r2^2) / (2*r1*r3);
C4 = (r1^2 + r2^2 - r3^2 - r4^2) / (2*r1*r2);
% Freudenstein Equation
freudenstein_eqn = C1*cos(phi3) + C2*cos(phi2) + C3 - cos(phi2 - phi3);
% Solve for phi3 Roots
A_phi3 = C2 - 1;
B_phi3 = -2 * C1;
C_phi3 = 1 - C3;
discriminant_phi3 = B_phi3^2 - 4*A_phi3*C_phi3;
if discriminant_phi3 >= 0
phi3_root1 = 2 * atan((-B_phi3 + sqrt(discriminant_phi3)) / (2*A_phi3));
phi3_root2 = 2 * atan((-B_phi3 - sqrt(discriminant_phi3)) / (2*A_phi3));
else
phi3_root1 = NaN;
phi3_root2 = NaN;
end
% Display phi3 Roots
disp('Roots for phi3 (in radians):');
disp(['Root 1: ', num2str(phi3_root1)]);
disp(['Root 2: ', num2str(phi3_root2)]);
%% Loop 2 Closure Equations (Stephenson III Mechanism)
phi5 = atan(r6 / r3); % Relation between phi4 and phi6
relation1 = phi6 == phi4 - phi5;
% Real and Imaginary Parts
eqn_real2 = (r3 + r6)*cos(phi5) + r7*cos(phi7) == r8*cos(phi8);
eqn_imag2 = (r3 + r6)*sin(phi5) + r7*sin(phi7) == r8*sin(phi8);
% Solve Quadratic Equation for phi7
A_phi7 = cos(phi5) - r8/r7;
B_phi7 = -2 * r7*sin(phi5);
C_phi7 = r8^2 - r7^2;
discriminant_phi7 = B_phi7^2 - 4*A_phi7*C_phi7;
if discriminant_phi7 >= 0
phi7_root1 = 2 * atan((-B_phi7 + sqrt(discriminant_phi7)) / (2*A_phi7));
phi7_root2 = 2 * atan((-B_phi7 - sqrt(discriminant_phi7)) / (2*A_phi7));
else
phi7_root1 = NaN;
phi7_root2 = NaN;
end
% Display phi7 Roots
disp('Roots for phi7 (in radians):');
disp(['Root 1: ', num2str(phi7_root1)]);
disp(['Root 2: ', num2str(phi7_root2)]);
0 个评论
回答(1 个)
Anushka
2025-2-21
I understand that you are looking to optimize the MATLAB code for determining the link lengths of a six-bar mechanism. Here are some key improvements that you can make to optimize the code:
You can refer to the below MATLAB code for incorporating the above optimizations:
clc;
clear;
close all;
angle = [10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100];
x = [26.6 30.5 32.2 32 31.3 31.4 32.3 35.1 37.3 35 28.9 20.9 13.3 7.9 5.7 2.6 -0.3 -1 0];
y = [75.5 73.6 67.6 60.6 54.8 50.8 47.1 43 36.2 25.7 14.1 4.2 -2.6 -6.2 -7 -6.8 -5.4 -2.9 0];
theta = deg2rad(angle);
L0 = [20, 30, 40, 35, 25, 30, 50, 45];
objective = @(L) compute_error(L, theta, x, y);
options = optimoptions('lsqnonlin', 'Display', 'iter', 'MaxIterations', 500);
L_opt = lsqnonlin(objective, L0, [], [], options);
disp('Optimized Link Lengths:');
disp(L_opt);
figure;
hold on;
plot(x, y, 'bo-', 'LineWidth', 2, 'MarkerSize', 6, 'MarkerFaceColor', 'b');
[~, x_calc, y_calc] = compute_error(L_opt, theta, x, y);
plot(x_calc, y_calc, 'r--', 'LineWidth', 2);
legend('Given Trajectory', 'Optimized Mechanism');
grid on;
xlabel('x(mm)');
ylabel('y(mm)');
title('Optimized Six-Bar Mechanism Fit');
axis equal;
hold off;
function [error, x_calc, y_calc] = compute_error(L, theta, x_desired, y_desired)
r1 = L(1);
r2 = L(2);
r3 = L(3);
r4 = L(4);
r5 = L(5);
r6 = L(6);
r7 = L(7);
r8 = L(8);
x_calc = zeros(size(theta));
y_calc = zeros(size(theta));
for i = 1:length(theta)
phi2 = theta(i);
fn = @(phi) loop_closure_eqs(phi, phi2, r1, r2, r3, r4, r5, r6, r7, r8);
phi0 = [0, pi/4, pi/3, pi/6]; % Initial guess for phi
phi_sol = fsolve(fn, phi0);
phi3 = phi_sol(1);
phi4 = phi_sol(2);
phi6 = phi_sol(3);
phi7 = phi_sol(4);
x_calc(i) = r3 * cos(phi4) + r6 * cos(phi6);
y_calc(i) = r3 * sin(phi4) + r6 * sin(phi6);
end
error = [(x_calc - x_desired), (y_calc - y_desired)];
end
function F = loop_closure_eqs(phi, phi2, r1, r2, r3, r4, r5, r6, r7, r8)
phi3 = phi(1);
phi4 = phi(2);
phi6 = phi(3);
phi7 = phi(4);
F(1) = r1 * cos(phi2) + r2 * cos(phi3) - r3 * cos(phi4) - r4;
F(2) = r1 * sin(phi2) + r2 * sin(phi3) - r3 * sin(phi4);
phi5 = atan(r6 / r3);
F(3) = (r3 + r6) * cos(phi5) + r7 * cos(phi7) - r8 * cos(phi7 + pi/2);
F(4) = (r3 + r6) * sin(phi5) + r7 * sin(phi7) - r8 * sin(phi7 + pi/2);
end
You can refer to the given documentation of 'lsqnonlin' to get a better understanding:
Hope this helps!
0 个评论
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Equation Solving 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!