time series fitting to statistical moments

2 次查看(过去 30 天)
Hello,
I have a process for which I know the conditional moments:
mean = exp(-a * t)*(x-mu)
variance = ((1-exp(-2* t* a))* sigma)/2a
where a and sigma are unknown parameters.
By using the fact that conditional moments are linear, I would like to estimate the 2 unknown parameters through a linear regression of X(t+dt) and X^2(t+dt) on X(t) where X(t) is a known time series that I have, and dt is the time interval used in the time series.
Any idea about how to implement this in matlab code, would be really appreciated.
Thanks
Best regards
Paolo
  2 个评论
Sam Chak
Sam Chak 2025-2-14
Hi @Paolo, could you at least provide the data for visualization in MATLAB?
Paolo
Paolo 2025-2-14
Hi Sam, here the data attached.
thanks for help
Paolo

请先登录,再进行评论。

回答(1 个)

Star Strider
Star Strider 2025-2-14
where a and sigma are unknown parameters
Beyond that, I am clueless as to any appropriate way to do this parameter estimation, since there is a significant amount of missing information.
Using my fertile imagination to fill those gaps, try something like tthis —
LD = load('cds.mat');
X = LD.spread; % The ‘X’ Part
X = X(:);
Size_X = size(X)
Size_X = 1×2
2219 1
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
t = 0:numel(X)-1; % Undefined, So A Guess
t = t(:);
mu = mean(X) % Undefined, So A Guess
mu = 0.0425
dt = randi([2 10])
dt = 4
Xmm = movmean(X,dt); % Use ‘movmean’ To Provide The ‘(X(t+dt)’ Mean
Xmv = movvar(X,dt); % Use ‘movvar’ To Provide The ‘(X(t+dt)’ Variance
fcn = @(b,x) [exp(-b(1) .* t).*(x-mu), ((1-exp(-2 * t .* b(1)) .* b(2))./(2*b(1)))] % b(1) = a, b(2) = sigma
fcn = function_handle with value:
@(b,x)[exp(-b(1).*t).*(x-mu),((1-exp(-2*t.*b(1)).*b(2))./(2*b(1)))]
[B, fv] = fminsearch(@(b) norm([Xmm(:) Xmv(:)] - fcn(b,X(:))), rand(2,1) );
FinalValue = fv
FinalValue = 2.1505
fprintf('\n\nParameters:\n\ta \t= %10.3f\n\tsigma \t= %10.3f\n\n', B)
Parameters: a = 2782.231 sigma = 2162.584
figure
plot(t, X, DisplayName="X(t)")
hold on
plot(t, Xmm, DisplayName="movmean(X)")
hold off
grid
xlabel("Time")
ylabel("Value")
legend(Location='best')
X = X.^2; % The 'X²' Part
Xmm = movmean(X,dt); % Use ‘movmean’ To Provide The ‘(X(t+dt)’ Mean
Xmv = movvar(X,dt); % Use ‘movvar’ To Provide The ‘(X(t+dt)’ Variance
fcn = @(b,x) [exp(-b(1) .* t).*(x-mu), ((1-exp(-2 * t .* b(1)) .* b(2))./(2*b(1)))] % b(1) = a, b(2) = sigma
fcn = function_handle with value:
@(b,x)[exp(-b(1).*t).*(x-mu),((1-exp(-2*t.*b(1)).*b(2))./(2*b(1)))]
[B, fv] = fminsearch(@(b) norm([Xmm(:) Xmv(:)] - fcn(b,X(:))), rand(2,1) );
FinalValue = fv
FinalValue = 0.1420
fprintf('\n\nParameters:\n\ta \t= %10.3f\n\tsigma \t= %10.3f\n\n', B)
Parameters: a = 525.128 sigma = 109.864
figure
plot(t, X, DisplayName="X(t)^2")
hold on
plot(t, Xmm, DisplayName="movmean(X^2)")
hold off
grid
xlabel("Time")
ylabel("Value")
legend(Location='best')
.

类别

Help CenterFile Exchange 中查找有关 Linear and Nonlinear Regression 的更多信息

产品


版本

R2024b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by