Shapley based feature selection
4 次查看(过去 30 天)
显示 更早的评论
Hello everyone, I am trying to perform Shapley based feature selection. I wrote the code below but I did not use the Ytest variable. Xtest does not contain the class labels; they are in the Ytest variable. I am a little confused. Am I doing something wrong? Thanks for the help.
DataSet = load('Seeds.txt');
[~,nFeatures] = size(DataSet);
X = DataSet(:,(1:nFeatures - 1));
Y = DataSet(:,nFeatures);
c = cvpartition(Y, 'Holdout', 0.20, 'Stratify', true);
Xtrain = X(training(c), :);
Xtest = X(test(c), :);
Ytrain = Y(training(c));
Ytest = Y(test(c));
Mdl = fitcecoc(Xtrain, Ytrain);
LimeRes = shapley(Mdl);
FitRes = fit(LimeRes, Xtest);
plot(FitRes)
采纳的回答
the cyclist
2025-3-2
The Shapley values don't require the class labels (i.e. the actual responses) to determine feature importance.
The Shapley values only indicate, for a given model, how much each feature affects the predicted class label. For example, suppose you are trying to predict whether someone is going to repay their car loan on time. For borrower Alice, the model might predict "NO", because she already has a lot of debt. For borrower Bob, the model might also predict "NO", but because Bob has low income (even if he has low debt).
The Shapley values of debt and income will be different for Alice and Bob. It does not matter whether they actually default or not. The Shapley value is explaining only where the prediction came from.
I hope that helps.
更多回答(1 个)
Walter Roberson
2025-3-2
编辑:Walter Roberson
2025-3-2
YtestPred = predict(Mdl, Xtest);
test_accuracy = nnz(Ytest(:) == YtestPred(:)) / numel(Ytest) * 100;
fprintf('test accuracy: %.2f\n', test_accuracy);
0 个评论
另请参阅
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!