alphaShape doubt to extract the number of polygons and its vertices

3 次查看(过去 30 天)
clc;
clear all;
close all;
t_span = 15;
dt = 0.01;
t = 0:dt:t_span;
options = optimoptions('quadprog','Display','off');
x(1) = 7.5;
y(1) = 0;
alpha_1 = 3.5;
r = 4;
grid_size = 20;
[X_grid, Y_grid] = meshgrid(linspace(-10, 10, grid_size), linspace(-10, 10, grid_size));
Wx_est = zeros(size(X_grid));
Wy_est = zeros(size(Y_grid));
Q = 0.02 * eye(2);
R = 0.05 * eye(2);
L = 2;
alpha = 1e-3;
kappa = 0;
beta = 2;
lambda = alpha^2 * (L + kappa) - L;
gamma = sqrt(L + lambda);
for i = 1:grid_size
for j = 1:grid_size
state{i, j} = [0; 0];
P{i, j} = eye(2);
end
end
true_Wx = sin(2 * pi * X_grid / max(X_grid(:))) + cos(2 * pi * Y_grid / max(Y_grid(:)));
true_Wy = cos(2 * pi * X_grid / max(X_grid(:))) + sin(2 * pi * Y_grid / max(Y_grid(:)));
polygon_coords = {};
for n = 1:length(t)
disp(['Current time = ', num2str(n*dt)]);
xd = r * cos(t(n));
yd = r * sin(t(n));
xd_dot = -r * sin(t(n));
yd_dot = r * cos(t(n));
V = 0.5 * ((x(n) - xd)^2 + (y(n) - yd)^2);
V_dot = [x(n) - xd, y(n) - yd];
extra_terms = (x(n) - xd) * xd_dot + (y(n) - yd) * yd_dot;
H = eye(2);
f = zeros(2, 1);
A = V_dot;
b = -alpha_1 * V + extra_terms;
u(:, n) = quadprog(H, f, A, b, [], [], [], [], [], options);
for i = 1:grid_size
for j = 1:grid_size
x_k = state{i, j};
P_k = P{i, j};
sigma_points = [x_k, x_k + gamma * chol(P_k)', x_k - gamma * chol(P_k)'];
sigma_points_pred = zeros(size(sigma_points));
for k = 1:size(sigma_points, 2)
sigma_points_pred(:, k) = [sigma_points(1, k) + dt * (0.1 * sin(sigma_points(2, k)));
sigma_points(2, k) + dt * (0.1 * cos(sigma_points(1, k)))];
end
x_pred = sum(sigma_points_pred, 2) / (2 * L + 1);
P_pred = Q;
for k = 1:size(sigma_points, 2)
P_pred = P_pred + (sigma_points_pred(:, k) - x_pred) * (sigma_points_pred(:, k) - x_pred)';
end
z_pred = x_pred;
P_z = P_pred + R;
K = P_pred / P_z;
measurement = [true_Wx(i, j); true_Wy(i, j)] + mvnrnd([0; 0], R)';
state{i, j} = x_pred + K * (measurement - z_pred);
P{i, j} = (eye(2) - K) * P_pred * (eye(2) - K)' + K * R * K';
Wx_est(i, j) = state{i, j}(1);
Wy_est(i, j) = state{i, j}(2);
if n > 1
Wx_est(i, j) = 0.9 * Wx_est(i, j) + 0.1 * state{i, j}(1);
Wy_est(i, j) = 0.9 * Wy_est(i, j) + 0.1 * state{i, j}(2);
end
end
end
W_magnitude = sqrt(Wx_est.^2 + Wy_est.^2);
wind_threshold = 0.65 * max(W_magnitude(:));
high_wind_mask = W_magnitude > wind_threshold;
high_wind_x = X_grid(high_wind_mask);
high_wind_y = Y_grid(high_wind_mask);
figure(300); clf; hold on;
imagesc(X_grid(1, :), Y_grid(:, 1), high_wind_mask);
colormap([1 1 1; 1 0 0]);
colorbar;
quiver(X_grid, Y_grid, Wx_est, Wy_est, 0.5, 'k', 'LineWidth', 1);
if numel(high_wind_x) >= 4
shp = alphaShape(high_wind_x, high_wind_y, 1);
plot(shp, 'FaceColor', 'm', 'FaceAlpha', 0.3);
facets = boundaryFacets(shp);
poly_x = high_wind_x(facets(:));
poly_y = high_wind_y(facets(:));
polygon_coords{end+1} = [poly_x, poly_y];
end
plot(r * cos(t), r * sin(t), 'c--', 'LineWidth', 1.5);
plot(x(1:n), y(1:n), 'b', 'LineWidth', 1.5);
scatter(x(n), y(n), 50, 'b', 'filled');
xlabel('X-axis');
ylabel('Y-axis');
title(['Wind Field & High-Wind Regions at t = ', num2str(n*dt, '%.2f')]);
axis equal;
grid on;
drawnow;
for i = 1:grid_size
for j = 1:grid_size
true_Wx(i, j) = true_Wx(i, j) + dt * sin(true_Wy(i, j)) + 0.05 * randn;
true_Wy(i, j) = true_Wy(i, j) + dt * cos(true_Wx(i, j)) + 0.05 * randn;
end
end
x_clamped = min(max(x(n), min(X_grid(:))), max(X_grid(:)));
y_clamped = min(max(y(n), min(Y_grid(:))), max(Y_grid(:)));
wind_x = interp2(X_grid, Y_grid, Wx_est, x_clamped, y_clamped, 'linear', 0);
wind_y = interp2(X_grid, Y_grid, Wy_est, y_clamped, y_clamped, 'linear', 0);
x(n+1) = x(n) + dt * (u(1, n) + wind_x);
y(n+1) = y(n) + dt * (u(2, n) + wind_y);
end
For the above matlab code, alphaShape is giving me the polygons when "if numel(high_wind_x) >= 4" condition is being satisfied. I want to know that for each polygon being formed, what are the vertices being used to form these polygons?

采纳的回答

Walter Roberson
Walter Roberson 2025-3-21
编辑:Walter Roberson 2025-3-21
After the call
shp = alphaShape(high_wind_x, high_wind_y, 1);
you can do
[tri, P] = alphaTriangulation(shp);
tri will be the triangulation, and P will be the matrix of vertices associated with the triangulation. So to get the vertices for each triangle, you would
P(tri)

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Bounding Regions 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by