Different results accross multiple runs
1 次查看(过去 30 天)
显示 更早的评论
Hello,
I'm facing a problem that when i run same classification algorithm multiple times, I find that the accuracy results differ. I fixed the seed value using rng function, set the learnables (weights and biases) of the network manulay using Xavier(Glorot), and I also restrictied to use only one CPU and not to use GPU. Any Help?
I've read that it's accepted to have slightly differences among multiple runs and I have to get the average and the STD of the results and use them as the final score of my algorithm is it true if so please give me a refereance for that. Thanks in advance.
0 个评论
采纳的回答
Joss Knight
2025-7-10
It might help to follow some of the suggestions here, even if you are not using a GPU:
You should be able to get deterministic results for everything by controlling the rng seed as long as your execution environment is not changing (e.g. a laptop is throttling, memory usage is changing due to execution of other applications and so forth).
3 个评论
Joss Knight
2025-7-10
It's hard to intuit how, if everything is on the CPU. Are you sure you are running the same code, resetting the rng before you do anything else, and re-creating all the networks and datastores? Also, you cannot use background preprocessing for your data.
Joss Knight
2025-7-11
Hi! I see you posted some code but then deleted it. Hopefully this is because you worked out how to get reproducible results. If not, let me know and I can look into it further.
更多回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Image Data Workflows 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!