how can ı use "minibatchpredict(net,XTest);" command on simulink?
7 次查看(过去 30 天)
显示 更早的评论
I trained a LSTM network.
How can I use "scores = minibatchpredict(net,XTest);" and "YPred = predict(net, XTest);" commands on Simulink?
0 个评论
回答(1 个)
AJ Ibraheem
2025-10-6
编辑:Walter Roberson
2025-10-6
The 'Stateful Predict' block might be what you're looking for. See https://uk.mathworks.com/help/deeplearning/ref/statefulpredict.html
5 个评论
Spoorthy Kannur
2025-11-11
Hi Bahadir,
You may try the following:
In Simulink, you can use your trained network for prediction inside a MATLAB Function block, but there are a few important details to ensure it behaves consistently with MATLAB, in your case:
function y = fnc(u)
persistent net
if isempty(net)
net = coder.loadDeepLearningNetwork('32.mat');
end
% Preprocess input the same way as during training
input = rescale(u);
XTrain = {input'};
% Perform prediction
YPred = predict(net, XTrain);
y = YPred{1};
end
1. Use a supported compiler: “minibatchpredict” ( https://www.mathworks.com/help/deeplearning/ref/minibatchpredict.html) is not codegen-compatible, but “predict” is (https://www.mathworks.com/help/deeplearning/ref/dlnetwork.predict.html). Select a supported compiler using (Visual Studio C++ is required; MinGW64 won’t work for deep learning code generation):
mex -setup cpp
2. Match data preprocessing: Apply the same scaling or reshaping you used during training (e.g., sequence dimension order).
3. Choose the right block execution rate: For sequence data, ensure the Simulink sample time matches your network input timestep.
If your results still differ slightly from MATLAB, check whether the MATLAB version of “predict” was run statefully or statelessly, since LSTMs maintain hidden states across calls — this can cause small output differences unless you reset or manage the network state manually in Simulink.
If this does resolve the issue, kindly reach out to MathWorks Technical Support for more help (https://www.mathworks.com/support/contact_us.html)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Sequence and Numeric Feature Data Workflows 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!