How to integrate a control system by ode45 with PID control input ?
26 次查看(过去 30 天)
显示 更早的评论
I want to simulate a control system using ode45 function. The system model can be expressed as
, where the control input u is the PID control which can be expressed as
. The
is the desired state. My question is how to integrate the error in the ode model as illustrated in the following code example, since we only obtain the current time state X when the f function is called
function dX = f(t,X,P)
% ...
% ...
u = P.Kp * (P.Xd - X) + P.Ki * (P.Xd - X) + ... ; % How to integrate the error Xd - X ?
end
0 个评论
采纳的回答
Sam Chak
2025-11-20,15:25
Perhaps you can try this approach.
G = tf(1, [1, 0, 0]);
opt = pidtuneOptions('DesignFocus', 'disturbance-rejection');
wc = 5;
C = pidtune(G, 'PID', wc, opt);
% Parameters
P.Xd = 3; % desired state for X(1)
P.Kp = C.Kp; % proportional gain
P.Ki = C.Ki; % integral gain
P.Kd = C.Kd; % derivative gain
% ODE function
function dX = f(t, X, P)
% error
e = P.Xd - X(1);
% PID controller
u = P.Kp*e + P.Ki*X(3) - P.Kd*X(2);
% disturbance
d = 1;
% original 2nd-order system
dX(1) = X(2);
dX(2) = d + u;
% X(3) is ∫ e dt
dX(3) = e;
% system dynamics
dX = [dX(1)
dX(2)
dX(3)];
end
% Solve and plot
[t, X] = ode45(@(t, X) f(t, X, P), [0, 10], zeros(3, 1));
plot(t, X(:,1)), grid on
title('Time response for state x_{1}')
xlabel('t')
ylabel('x_{1}')
更多回答(1 个)
Torsten
2025-11-20,14:19
Add a second differential equation
dV/dt = P.Xd - X
with initial condition
V(0) = 0
Then
V(t) = integral_{0}^{t} (P.Xd - X) dt
0 个评论
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Ordinary Differential Equations 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
