Forward Euler solution improvement

36 次查看(过去 30 天)
Cesar
Cesar 2026-2-6,1:46
评论: Cesar about 8 hours 前
I would like to know if this code can be improved or is well-written as it is? it does not give errors. I'll appreciate any comments.Thanks
%part a
clear; clc;
% Parameters
alpha = 10;
beta_values = [2, 4];
h = 0.01;
t = 0:h:20;
N = length(t);
% Initial conditions
y1_0 = 0;
y2_0 = 2;
for b = 1:length(beta_values)
beta = beta_values(b);
y1 = zeros(1, N);
y2 = zeros(1, N);
% Initial values
y1(1) = y1_0;
y2(1) = y2_0;
% Forward Euler method
for n = 1:N-1
f1 = alpha ...
- y1(n) ...
- (4*y1(n)*y2(n)) / (1 + y1(n)^2);
f2 = beta * y1(n) * ...
(1 - y2(n) / (1 + y1(n)^2));
y1(n+1) = y1(n) + h * f1;
y2(n+1) = y2(n) + h * f2;
end
figure;
plot(t, y1, 'LineWidth', 1.5);
xlabel('t');
ylabel('y_1(t)');
title(['Forward Euler: y_1 vs t, \beta = ', num2str(beta)]);
grid on;
figure;
plot(y1, y2, 'LineWidth', 1.5);
xlabel('y_1');
ylabel('y_2');
title(['Phase Portrait: y_2 vs y_1, \beta = ', num2str(beta)]);
grid on;
end
%part b
% Parameters
alpha = 10;
beta_values = [3.4, 3.5, 3.6];
h = 0.01;
t = 0:h:100;
N = length(t);
% Initial conditions
y1_0 = 0;
y2_0 = 2;
for b = 1:length(beta_values)
beta = beta_values(b);
y1 = zeros(1, N);
y2 = zeros(1, N);
% Initial values
y1(1) = y1_0;
y2(1) = y2_0;
% Forward Euler method
for n = 1:N-1
f1 = alpha ...
- y1(n) ...
- (4*y1(n)*y2(n)) / (1 + y1(n)^2);
f2 = beta * y1(n) * ...
(1 - y2(n) / (1 + y1(n)^2));
y1(n+1) = y1(n) + h * f1;
y2(n+1) = y2(n) + h * f2;
end
figure;
plot(t, y1, 'LineWidth', 1.5);
xlabel('t');
ylabel('y_1(t)');
title(['y_1 vs t, \beta = ', num2str(beta)]);
grid on;
figure;
plot(y1, y2, 'LineWidth', 1.5);
xlabel('y_1');
ylabel('y_2');
title(['Phase Portrait y_2 vs y_1, \beta = ', num2str(beta)]);
grid on;
end

采纳的回答

Alan Stevens
Alan Stevens about 19 hours 前
It's clear and runs quickly. However, it's probably neater to pre-define your gradient functions like this:
% Gradient functions
f1 = @(alpha,y1,y2) alpha - y1 - (4*y1*y2) / (1 + y1^2);
f2 = @(beta,y1,y2) beta * y1 * (1 - y2 / (1 + y1^2));
and then replace the forward Euler equations simply by:
% Forward Euler method
for n = 1:N-1
y1(n+1) = y1(n) + h * f1(alpha,y1(n),y2(n));
y2(n+1) = y2(n) + h * f2(beta,y1(n),y2(n));
end
  2 个评论
Cesar
Cesar about 2 hours 前
Thanks, I would like to know if this code can also be improved? it works and does not give errors. Any comments will be appreciated.
clc; clear; close all;
% Parameters
T_final = 10;
u0 = [1; 0];
N_steps = [10000, 30000, 50000];
figure;
hold on;
colors = ['r', 'g', 'b'];
for i = 1:length(N_steps)
N = N_steps(i);
h = T_final / N;
t = 0:h:T_final;
u = zeros(2, length(t));
u(:, 1) = u0;
% Forward Euler
for n = 1:N
f = [u(2, n); -u(1, n)];
u(:, n+1) = u(:, n) + h * f;
end
plot(u(1, :), u(2, :), 'Color', colors(i), 'LineWidth', 1, ...
'DisplayName', ['N = ' num2str(N)]);
end
xlabel('u_1');
ylabel('u_2');
title('u_2 vs u_1 (Forward Euler)');
set(gcf, 'Position', [100, 100, 00, 500])
legend('show');
grid on;
axis equal;
Cesar
Cesar about 8 hours 前
Also just wondering if oed45 is correctly implemented here?:
function orbit
mu = 0.012277471;
mu_hat = 1 - mu;
T_final = 17.06521656; % One full period
y0 = [0.994; 0; 0; -2.00158510637908252240537862224];
options = odeset('RelTol', 1e-12, 'AbsTol', 1e-12);
[t, y] = ode45(@(t, y) arenstorf_system(t, y, mu, mu_hat), [0 T_final], y0, options);
figure('Color', 'w', 'Position', [100, 100, 900, 700]);
plot(y(:,1), y(:,2), 'b--', 'LineWidth', 1.5);
hold on;
xlabel('u_1'); ylabel('u_2');
legend('ode45 solution');
grid on;
axis equal; % Ensures the orbit isn't visually distorted
end
function dy = arenstorf_system(~, y, mu, mu_hat)
u1 = y(1); u2 = y(2); v1 = y(3); v2 = y(4);
D1 = ((u1 + mu)^2 + u2^2)^(3/2);
D2 = ((u1 - mu_hat)^2 + u2^2)^(3/2);
du1 = v1;
du2 = v2;
dv1 = u1 + 2*v2 - mu_hat*(u1 + mu)/D1 - mu*(u1 - mu_hat)/D2;
dv2 = u2 - 2*v1 - mu_hat*u2/D1 - mu*u2/D2;
dy = [du1; du2; dv1; dv2];
end

请先登录,再进行评论。

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Mathematics 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by