Info
此问题已关闭。 请重新打开它进行编辑或回答。
Neural-Network-Performance Paradox (WITH PICTURES!)
3 次查看(过去 30 天)
显示 更早的评论
Hello,
I observed a strange behaviour of my neural network.
Training:


-> As you see, the performance(MSE) is pretty good in training, validation AND testing. But look what happens, when I test the network with more data, that I cut out from the dataset before training.
Testing:

-> The performance is terrible! You would assume, that the performance is more or less the same as in the training-testset, because both testsets are from the same dataset and doesn't influence the training, but they are not.
Has anybody an explanation?
Kind regards, Detlef
0 个评论
回答(1 个)
Greg Heath
2015-7-16
编辑:Walter Roberson
2015-7-18
Rnew looks good but MSEnew looks about 60 times too large. Something is wrong.
MSEnew has the symptoms of overtraining an overfit net. Are there more unknown weights Nw than training equations Ntrneq?
[ I N ] = size(input), [ O N ] = size(target)
Ntst = round(0.15*N), Nval = Ntst,
Ntrn = N - 2*Ntst, Ntrneq = Ntrn*O
For an I-H-O node topology
Nw = ( I + 1 ) * H + ( H + 1 )*O
Ntrneq >= Nw when
H <= (Ntrneq - O ) / ( I + O + 1) % 19442
I assume that you don't have anywhere near that many hidden nodes.
How may do you have?
How much training time?
What was the stopping criterion tr.stop?
Try repeating with other randomizations of the data.
However, with a data set that large, I would try
Nnew = Ntst = Nval = Ntrn
Hope this helps.
Greg
4 个评论
Greg Heath
2015-7-18
I think you should be more concerned that the original data has
R ~ 0.996 with MSE ~ 45
whereas the new data has
R ~ 0.956 with MSE ~ 2705
It doesn't make sense.
What is the mean variance of both targets?
Remember
R ~ sqrt( 1 - MSE/mean(var(target',1))
ope this helps.
Greg
此问题已关闭。
另请参阅
产品
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!