SVM with Dummy Variables

2 次查看(过去 30 天)
Context: I have a cell array with 19 features that are all categorical (nominal) (as columns) and ~1500 data entries (as rows). I've looped through all the columns and used double(dummyvar(nominal(featureVector))) to convert all the features into dummy variables (vectors of 1s & 0s) and all looks right.
Problem: When I try to feed this as the input data X to fitcsvm() it gives me an error as it expects X to be a floating point matrix.
Error using ClassificationSVM.prepareData (line 602)
You can pass only floating-point data for X to SVM.
If I convert the cell array into a matrix, then the dummy variable vectors will be represented as columns and thus they lose their identity as dummy variables as fitcsvm() expects each column to be a predictor in itself and now thinks there are (num of features)*(num of categories in each feature) predictors. So I don't see how I can use dummy variables with an SVM in Matlab which is mind boggling and I know this is a basic problem many will have.
Thanks so much for your help!

采纳的回答

Ilya
Ilya 2015-7-29
Just convert your cell array into a matrix. Yes, dummy variables will lose their identity in the sense that different levels of a categorical predictor will be treated as different predictors. This is common practice though.
  1 个评论
Melissa McCoy
Melissa McCoy 2015-8-13
Many thanks for your answer earlier!
Quick followup question - how then does sequential feature selection work? I've tried to implement it with sequentialfs() but obviously it doesn't realized that, for example, the first 3 columns actually refer to one feature and just takes the first column. I've posted my question here if helpful: http://www.mathworks.com/matlabcentral/answers/233803-sequentialfs-with-dummified-input-feature-matrix
Many thansk again!

请先登录,再进行评论。

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Get Started with Statistics and Machine Learning Toolbox 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by