I will appreciate any suggestion on how I could have a solution to this.

2 次查看(过去 30 天)
SX=1000*[1 2 3];
SY=2000*[1.5 2 3];
SXY = 1258[1 2 3];
a = [0.3 0.6 0.9];
syms rb
for j=1:1:3
if pwmid(j)<=pwc(j)
SRR(j)=0.5*(SX(j)+SY(j)).*(1-(a(j).^2)/rb^2)+0.5*(SX(j)-SY(j)).*(1+(3*a(j).^4/rb^4)-(4*a(j).^2/rb^2))*cos(2*thbkso(j))...
+SXY(j).*(1+(3*a(j).^4/rb^4)-(4*a(j).^2/rb^2))*sin(2*thbkso(j))+(a(j).^2/rb^2).*pwmid(j);
STT(j)=0.5*(SX(j)+SY(j)).*(1+(a(j).^2)/rb^2)-0.5*(SX(j)-SY(j)).*(1+(3*a(j).^4/rb^4))*cos(2*thbkso(j))...
-SXY(j).*(1+(3*a(j).^4/rb^4))*sin(2*thbkso(j))-(a(j).^2/rb^2).*pwmid(j);
SRT(j)=(0.5*(SX(j)-SY(j)).*sin(2*thbkso(j))+SXY(j).*cos(2*thbkso(j))).*(1-(3*a(j).^4/rb^4)+(2*a(j).^2/rb^2));
SIGMA1A(j)=0.5*(STT(j)+SRR(j))+0.5*((STT(j)-SRR(j)).^2+4*SRT(j).^2).^0.5;
SIGMA3A(j)=0.5*(STT(j)+SRR(j))-0.5*((STT(j)-SRR(j)).^2+4*SRT(j).^2).^0.5;
C0FUN(j)=SIGMA1A(j)-SIGMA3A(j);
rbsoln{j}=double(vpasolve(C0FUN(j)==C0(j),rb));
cell(rbsoln);
rw(j)=rbsoln{j}(1);
rbkt_art(j) = rbsoln{j}(1)-a(j);
else
rw(j)=a(j);
rbkt_art(j)=rbkt_int(j);
end
end
  8 个评论

请先登录,再进行评论。

回答(3 个)

Isaac
Isaac 2015-8-13
Sorry
SXY = 125*[1 2 3]; C0 = 100*[1 2 3];
Thanks

Walter Roberson
Walter Roberson 2015-8-13
All solutions to those equations are strictly imaginary for the parameters you give.
For example, for j = 1, the solutions are
(3/10)*sqrt(5)*sqrt(roots([+8105,-9500,+4790,-1164,+117]))
and the negatives of those.
  2 个评论
Walter Roberson
Walter Roberson 2015-8-13
Please explain what you mean when you said you were concerned about solve or vpasolve "not giving favorable results" ?
If you want all of the results, then you may have to use solve() instead of vpasolve(), and you might have to double() the result of solve() to get numeric values. I do not have the Symbolic Toolbox so I cannot check exactly what would be returned.
Walter Roberson
Walter Roberson 2015-8-14

I could have made a mistake along the way, but if I got it right then:

for j = 1 : 3
  A = 32 * SXY(j) * sin(thbkso(j)) * cos(thbkso(j))^3 * SX(j) - 32 * SXY(j) * sin(thbkso(j)) * cos(thbkso(j))^3 * SY(j) - 16 * SXY(j) * sin(thbkso(j)) * cos(thbkso(j)) * SX(j) + 16 * SXY(j) * sin(thbkso(j)) * cos(thbkso(j)) * SY(j) - C0(j)^2 + SX(j)^2 - 2 * SX(j) * SY(j) + 4 * SXY(j)^2 + SY(j)^2;
    B =  - 32 * cos(thbkso(j))^4 * SX(j)^2 * a(j)^2 + 64 * cos(thbkso(j))^4 * SX(j) * SY(j) * a(j)^2 + 128 * cos(thbkso(j))^4 * SXY(j)^2 * a(j)^2 - 32 * cos(thbkso(j))^4 * SY(j)^2 * a(j)^2 - 8 * sin(thbkso(j)) * cos(thbkso(j)) * SX(j) * SXY(j) * a(j)^2 - 8 * sin(thbkso(j)) * cos(thbkso(j)) * SXY(j) * SY(j) * a(j)^2 + 16 * sin(thbkso(j)) * cos(thbkso(j)) * SXY(j) * a(j)^2 * pwmid(j) + 28 * cos(thbkso(j))^2 * SX(j)^2 * a(j)^2 - 64 * cos(thbkso(j))^2 * SX(j) * SY(j) * a(j)^2 + 8 * cos(thbkso(j))^2 * SX(j) * a(j)^2 * pwmid(j) - 128 * cos(thbkso(j))^2 * SXY(j)^2 * a(j)^2 + 36 * cos(thbkso(j))^2 * SY(j)^2 * a(j)^2 - 8 * cos(thbkso(j))^2 * SY(j) * a(j)^2 * pwmid(j) - 2 * SX(j)^2 * a(j)^2 + 8 * SX(j) * SY(j) * a(j)^2 - 4 * SX(j) * a(j)^2 * pwmid(j) + 16 * SXY(j)^2 * a(j)^2 - 6 * SY(j)^2 * a(j)^2 + 4 * SY(j) * a(j)^2 * pwmid(j);
    C = 128 * sin(thbkso(j)) * cos(thbkso(j))^3 * SX(j) * SXY(j) * a(j)^4 - 128 * sin(thbkso(j)) * cos(thbkso(j))^3 * SXY(j) * SY(j) * a(j)^4 + 48 * cos(thbkso(j))^4 * SX(j)^2 * a(j)^4 - 96 * cos(thbkso(j))^4 * SX(j) * SY(j) * a(j)^4 - 192 * cos(thbkso(j))^4 * SXY(j)^2 * a(j)^4 + 48 * cos(thbkso(j))^4 * SY(j)^2 * a(j)^4 - 48 * sin(thbkso(j)) * cos(thbkso(j)) * SX(j) * SXY(j) * a(j)^4 + 80 * sin(thbkso(j)) * cos(thbkso(j)) * SXY(j) * SY(j) * a(j)^4 - 32 * sin(thbkso(j)) * cos(thbkso(j)) * SXY(j) * a(j)^4 * pwmid(j) - 40 * cos(thbkso(j))^2 * SX(j)^2 * a(j)^4 + 96 * cos(thbkso(j))^2 * SX(j) * SY(j) * a(j)^4 - 16 * cos(thbkso(j))^2 * SX(j) * a(j)^4 * pwmid(j) + 192 * cos(thbkso(j))^2 * SXY(j)^2 * a(j)^4 - 56 * cos(thbkso(j))^2 * SY(j)^2 * a(j)^4 + 16 * cos(thbkso(j))^2 * SY(j) * a(j)^4 * pwmid(j) + 7 * SX(j)^2 * a(j)^4 - 18 * SX(j) * SY(j) * a(j)^4 + 4 * SX(j) * a(j)^4 * pwmid(j) - 8 * SXY(j)^2 * a(j)^4 + 15 * SY(j)^2 * a(j)^4 - 12 * SY(j) * a(j)^4 * pwmid(j) + 4 * a(j)^4 * pwmid(j)^2;
    E = 288 * SXY(j) * a(j)^8 * sin(thbkso(j)) * cos(thbkso(j))^3 * SX(j) - 288 * SXY(j) * a(j)^8 * sin(thbkso(j)) * cos(thbkso(j))^3 * SY(j) - 144 * SXY(j) * a(j)^8 * sin(thbkso(j)) * cos(thbkso(j)) * SX(j) + 144 * SXY(j) * a(j)^8 * sin(thbkso(j)) * cos(thbkso(j)) * SY(j) + 9 * SX(j)^2 * a(j)^8 - 18 * SY(j) * a(j)^8 * SX(j) + 36 * SXY(j)^2 * a(j)^8 + 9 * SY(j)^2 * a(j)^8;
    sols_plus = sqrt( roots([A, B, C, 0, E]) );
    sols{j} = [sols_plus; -sols_plus];
  end

I am not certain of these coefficients; I am concerned that the previous solution did not have a 0 in the x^1 position but this does.

请先登录,再进行评论。


Isaac
Isaac 2015-8-13
Thanks Walter...yes, the solutions are all imaginary with the current inputs

类别

Help CenterFile Exchange 中查找有关 Calculus 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by