How to create a square matrix with consecutive numbers on each row?

15 次查看(过去 30 天)
Hi everyone,
Given a vector i.e. n=[1 12 25 78], is there any way to create a matrix A, such that
A=[ 1 2 3 4; 11 12 13 14; 23 24 25 26; 75 76 77 78]?
without FOR LOOP?

采纳的回答

Guillaume
Guillaume 2015-8-20
编辑:Guillaume 2015-8-20
With toeplitz construct a symmetric matrix with 0 on diagonal and increments on the sides and with bsxfun add that to your n:
n = [1 12 25 78];
A = bsxfun(@plus, toeplitz(0:-1:1-numel(n), 0:numel(n)-1), n')

更多回答(1 个)

Sebastian Castro
Sebastian Castro 2015-8-20
Yeah, for sure.
I'm sure there are more efficient ways to do this, but this one will show you a few examples of the "repmat" function to string together vectors and matrices (either row-wise or column-wise).
I first avoided hard-coding parameters by using a variable "nCols" for number of columns, which should be the same as number of rows (or numel(n)). Note that I had to transpose n to n' to meet your desired solution.
>> nCols = numel(n);
>> baseMatrix = repmat(n',[1 nCols])
baseMatrix =
1 1 1 1
12 12 12 12
25 25 25 25
78 78 78 78
Next, you have to make the pretty complicated matrix to add to that matrix above. I would copy-paste both of the terms below into MATLAB to see what each of those does. Basically, I create a column pattern and then a row pattern, and subtract them.
>> addMatrix = repmat(0:nCols-1,[nCols 1]) - repmat((0:nCols-1)',[1 nCols])
addMatrix =
0 1 2 3
-1 0 1 2
-2 -1 0 1
-3 -2 -1 0
Finally, add 'em up!
>> A = baseMatrix + addMatrix
A =
1 2 3 4
11 12 13 14
23 24 25 26
75 76 77 78
- Sebastian
  4 个评论
Walter Roberson
Walter Roberson 2021-8-18
N = 22;
v = [0:N];
M = toeplitz([v(1) fliplr(v(2:end))], v)
M = 23×23
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 22 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 21 22 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 20 21 22 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 19 20 21 22 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 18 19 20 21 22 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 17 18 19 20 21 22 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 16 17 18 19 20 21 22 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 16 17 18 19 20 21 22 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 14 15 16 17 18 19 20 21 22 0 1 2 3 4 5 6 7 8 9 10 11 12 13
result = mod(tril(-tril(M)) + triu(M), N+1)
result = 23×23
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13
David Alejandro Ramirez Cajigas
编辑:David Alejandro Ramirez Cajigas 2021-8-18
Bingo!
The answer is:
N=22
Top1=N
Top12=repmat(0:Top1-1,[Top1 1]) - repmat((0:Top1-1)',[1 Top1]); %genera matriz 0 hasta n
Top17=(tril(Top12,-1)*-1);
Top18=Top17+Top12;
Top19=Top17+Top18

请先登录,再进行评论。

类别

Help CenterFile Exchange 中查找有关 Matrix Indexing 的更多信息

标签

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by