uncertainty and curve fitting
22 次查看(过去 30 天)
显示 更早的评论
Hi,
Please I need your help. I'm working on curve fitting, I'm using lsqcurvefit function to do it!! I'm trying to estimate uncertainty of the coefficient A and B of the function fitted to my observation ponits (y=A.x^B)!! Please could you help me!! Thank you in advance
Mira
0 个评论
采纳的回答
更多回答(2 个)
bym
2011-12-19
this example shows how to bootstrap to get the standard error in the coefficients. You can adapt it to use lsqcurvefit or transform your model to linear using logarithms
load hald
x = [ones(size(heat)),ingredients];
y = heat;
b = regress(y,x);
yfit = x*b;
resid = y - yfit;
se = std(bootstrp(...
1000,@(bootr)regress(yfit+bootr,x),resid));
1 个评论
Richard Willey
2011-12-20
Bootstraps are great. I love them to death. However, I question whether they're an appropriate solution when parametric methods are available.
In general, I think of bootstraps as something we do out of necessity when a parametric estimate isn't feasible. For example, generating confidence bounds around the median, bootstrapping a LOESS curve or a kernel smoother.
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Interpolation 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!