How to train the classifier (using features extracted from images)?

2 次查看(过去 30 天)
I would like to train the Random forest classifier( which has 2 classes- pathology class(Tp) and non pathology class(Tn)). I have separate images to train & test the classifier. For feature extraction I should use HOG, GLCM, GLRLM. How do I train & test the classifier Using these extracted features?? I don't have any .mat file to train the classifier, I see most of the code uses mat file to train the classifier. So I don't have any idea to proceed this. Please help me with this.

采纳的回答

Image Analyst
Image Analyst 2015-10-12
Use the fitctree fucntion to create a classification tree based on the training data:
tModel = fitctree(xTrain, yTrain);
See what you can do with tModel by looking at its methods:
methods(tModel)
The resulting tree can be visualized with the view() function:
view(tModel, 'mode', 'graph');
New observations can be classified using the predict() function:
yPredicted = predict(tModel, newX);
The TreeBagger() function uses bootstrap aggregation ("bagging") to create an ensemble of classification trees.
tModel = TreeBagger(50, xTrain, yTrain); % Create new model based on 50 trees.
This is a more robust model.
  2 个评论
revathi t
revathi t 2015-10-14
Sir Could you explain me, what is xTrain & yTrain? (I have written the extracted features in train.xls)

请先登录,再进行评论。

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Classification Ensembles 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by