Help plotting FFT from column vector with real and imaginary parts.

13 次查看(过去 30 天)
Hello, I'm attempting to plot the fft from the data taken from an oscilloscope and saved in Excel.
I've saved the data in matlab as a column vector with 200 data points of real and imaginary parts, called 'data', and I'm trying to get an accurate FFT plot. The plot that comes out doesn't look like the FFT spikes I'm expecting; rather its just a strange squiggle. I was wondering if anybody has any insight into what I'm doing wrong. My code is:
>> freq = fft (data)
freq =
-1.2128 + 0.0000i
2.1644 + 5.0673i
0.2578 + 1.0098i
0.0654 + 0.6253i
0.0270 + 0.4352i
0.0174 + 0.3877i
0.0068 + 0.3035i
-0.0008 + 0.2554i
-0.0048 + 0.2123i
-0.0101 + 0.1999i
0.0021 + 0.1944i
-0.0191 + 0.1507i
-0.0352 + 0.1421i
-0.0275 + 0.1331i
-0.0235 + 0.1287i
-0.0528 + 0.1290i
-0.0094 + 0.0996i
-0.0388 + 0.0833i
-0.0216 + 0.0892i
-0.0338 + 0.0902i
-0.0159 + 0.0837i
-0.0284 + 0.0609i
-0.0360 + 0.0834i
-0.0358 + 0.0962i
-0.0206 + 0.0791i
-0.0261 + 0.0670i
-0.0314 + 0.0603i
-0.0204 + 0.0536i
-0.0122 + 0.0511i
-0.0247 + 0.0404i
-0.0297 + 0.0425i
-0.0275 + 0.0417i
-0.0325 + 0.0510i
-0.0250 + 0.0568i
-0.0192 + 0.0415i
-0.0296 + 0.0531i
-0.0199 + 0.0475i
-0.0255 + 0.0470i
-0.0340 + 0.0470i
-0.0225 + 0.0298i
-0.0254 + 0.0361i
-0.0179 + 0.0413i
-0.0312 + 0.0294i
-0.0364 + 0.0124i
-0.0237 + 0.0331i
-0.0264 + 0.0207i
-0.0172 + 0.0344i
-0.0181 + 0.0243i
-0.0486 + 0.0343i
-0.0056 + 0.0411i
-0.0436 + 0.0328i
-0.0230 + 0.0237i
-0.0372 + 0.0243i
-0.0291 + 0.0368i
-0.0212 + 0.0038i
-0.0266 + 0.0212i
-0.0309 + 0.0148i
-0.0411 + 0.0130i
-0.0279 + 0.0245i
-0.0151 + 0.0134i
-0.0347 + 0.0158i
-0.0324 + 0.0211i
-0.0287 + 0.0202i
-0.0305 + 0.0307i
-0.0145 + 0.0180i
-0.0227 + 0.0106i
-0.0480 + 0.0169i
-0.0270 + 0.0098i
-0.0301 + 0.0193i
-0.0271 + 0.0160i
-0.0410 + 0.0047i
-0.0239 + 0.0182i
-0.0198 + 0.0074i
-0.0419 + 0.0206i
-0.0228 + 0.0139i
-0.0150 + 0.0014i
-0.0281 + 0.0141i
-0.0280 + 0.0145i
-0.0460 + 0.0218i
-0.0194 + 0.0152i
-0.0303 - 0.0020i
-0.0215 + 0.0226i
-0.0372 - 0.0002i
-0.0243 + 0.0146i
-0.0262 + 0.0152i
-0.0350 + 0.0149i
-0.0252 + 0.0092i
-0.0154 + 0.0027i
-0.0391 - 0.0037i
-0.0301 + 0.0099i
-0.0439 - 0.0088i
-0.0103 + 0.0423i
-0.0094 - 0.0096i
-0.0434 + 0.0049i
-0.0310 + 0.0006i
-0.0493 + 0.0002i
0.0009 + 0.0156i
-0.0324 - 0.0052i
-0.0360 + 0.0146i
-0.0138 - 0.0139i
-0.0548 + 0.0000i
-0.0138 + 0.0139i
-0.0360 - 0.0146i
-0.0324 + 0.0052i
0.0009 - 0.0156i
-0.0493 - 0.0002i
-0.0310 - 0.0006i
-0.0434 - 0.0049i
-0.0094 + 0.0096i
-0.0103 - 0.0423i
-0.0439 + 0.0088i
-0.0301 - 0.0099i
-0.0391 + 0.0037i
-0.0154 - 0.0027i
-0.0252 - 0.0092i
-0.0350 - 0.0149i
-0.0262 - 0.0152i
-0.0243 - 0.0146i
-0.0372 + 0.0002i
-0.0215 - 0.0226i
-0.0303 + 0.0020i
-0.0194 - 0.0152i
-0.0460 - 0.0218i
-0.0280 - 0.0145i
-0.0281 - 0.0141i
-0.0150 - 0.0014i
-0.0228 - 0.0139i
-0.0419 - 0.0206i
-0.0198 - 0.0074i
-0.0239 - 0.0182i
-0.0410 - 0.0047i
-0.0271 - 0.0160i
-0.0301 - 0.0193i
-0.0270 - 0.0098i
-0.0480 - 0.0169i
-0.0227 - 0.0106i
-0.0145 - 0.0180i
-0.0305 - 0.0307i
-0.0287 - 0.0202i
-0.0324 - 0.0211i
-0.0347 - 0.0158i
-0.0151 - 0.0134i
-0.0279 - 0.0245i
-0.0411 - 0.0130i
-0.0309 - 0.0148i
-0.0266 - 0.0212i
-0.0212 - 0.0038i
-0.0291 - 0.0368i
-0.0372 - 0.0243i
-0.0230 - 0.0237i
-0.0436 - 0.0328i
-0.0056 - 0.0411i
-0.0486 - 0.0343i
-0.0181 - 0.0243i
-0.0172 - 0.0344i
-0.0264 - 0.0207i
-0.0237 - 0.0331i
-0.0364 - 0.0124i
-0.0312 - 0.0294i
-0.0179 - 0.0413i
-0.0254 - 0.0361i
-0.0225 - 0.0298i
-0.0340 - 0.0470i
-0.0255 - 0.0470i
-0.0199 - 0.0475i
-0.0296 - 0.0531i
-0.0192 - 0.0415i
-0.0250 - 0.0568i
-0.0325 - 0.0510i
-0.0275 - 0.0417i
-0.0297 - 0.0425i
-0.0247 - 0.0404i
-0.0122 - 0.0511i
-0.0204 - 0.0536i
-0.0314 - 0.0603i
-0.0261 - 0.0670i
-0.0206 - 0.0791i
-0.0358 - 0.0962i
-0.0360 - 0.0834i
-0.0284 - 0.0609i
-0.0159 - 0.0837i
-0.0338 - 0.0902i
-0.0216 - 0.0892i
-0.0388 - 0.0833i
-0.0094 - 0.0996i
-0.0528 - 0.1290i
-0.0235 - 0.1287i
-0.0275 - 0.1331i
-0.0352 - 0.1421i
-0.0191 - 0.1507i
0.0021 - 0.1944i
-0.0101 - 0.1999i
-0.0048 - 0.2123i
-0.0008 - 0.2554i
0.0068 - 0.3035i
0.0174 - 0.3877i
0.0270 - 0.4352i
0.0654 - 0.6253i
0.2578 - 1.0098i
2.1644 - 5.0673i
>> plot (freq)
Any help would be appreciated.

采纳的回答

Rick Rosson
Rick Rosson 2015-12-1
编辑:Rick Rosson 2015-12-1
N = length(data);
freq = fftshift(fft(data))/N;
plot(abs(freq));

更多回答(1 个)

Robert Evans
Robert Evans 2015-12-1
Thank you very much.

类别

Help CenterFile Exchange 中查找有关 Fourier Analysis and Filtering 的更多信息

标签

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by