How we can define the number of expansion of first input by using trigonometric functional link artificial neural network?

1 次查看(过去 30 天)
In trigonometric functional link artificial neural network, each input sample is expanded to N sine terms, N cosine terms plus the sample itself. How we can define N ?

采纳的回答

Greg Heath
Greg Heath 2016-1-16
From Fourier Series
N = T/dt
T = length of sample
dt = sampling time
Hope this helps.
Thank you for formally accepting my answer
Greg
  4 个评论
coqui
coqui 2016-1-24
I need to predict one day ahead by using functional link artificial neural network with hyperbolic tangent transfer function in output layer. what about the use of three expansion of first input Y1, i.e. are y1=Y1, y2=cos(πY1), y3=sin(πY1)???
Greg Heath
Greg Heath 2016-1-25
1. I AM NOT FAMLIAR WITH THE FUNCTIONAL LINK NET AND DON'T SEE THE ADVANTAGE OF ADDING THE FOURIER TERMS.
2. WHAT YOU HAVE WRITTEN ABOVE FOR Y2 AND Y3 MAKES ASOLUTELY NO SENSE TO ME. THEY ARE NOT TERMS IN THE EXPANSION OF Y1.

请先登录,再进行评论。

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Sequence and Numeric Feature Data Workflows 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by