Plot multi-class decision boundaries SVM?

8 次查看(过去 30 天)
Does anyone know how to plot Plot multi-class decision boundaries for SVM?
I'm doing Handwritten Digit classification so have 10-classes w/256-predictors and using "fitcecoc" and "predict" but having problems plotting the mixed-model, decision boundaries.
Any suggestions?
predictorExtractionFcn = @(x) array2table(x, 'VariableNames', predictorNames); svmPredictFcn = @(x) predict(classificationSVM, x); trainedClassifier.predictFcn = @(x) svmPredictFcn(predictorExtractionFcn(x));
predictorNames = {'column_1', 'column_2', 'column_3', 'column_4', 'column_5', 'column_6', 'column_7', 'column_8', 'column_9', 'column_10', 'column_11', 'column_12', 'column_13', 'column_14', 'column_15', 'column_16', 'column_17', 'column_18', 'column_19', 'column_20', 'column_21', 'column_22', 'column_23', 'column_24', 'column_25', 'column_26', 'column_27', 'column_28', 'column_29', 'column_30', 'column_31', 'column_32', 'column_33', 'column_34', 'column_35', 'column_36', 'column_37', 'column_38', 'column_39', 'column_40', 'column_41', 'column_42', 'column_43', 'column_44', 'column_45', 'column_46', 'column_47', 'column_48', 'column_49', 'column_50', 'column_51', 'column_52', 'column_53', 'column_54', 'column_55', 'column_56', 'column_57', 'column_58', 'column_59', 'column_60', 'column_61', 'column_62', 'column_63', 'column_64', 'column_65', 'column_66', 'column_67', 'column_68', 'column_69', 'column_70', 'column_71', 'column_72', 'column_73', 'column_74', 'column_75', 'column_76', 'column_77', 'column_78', 'column_79', 'column_80', 'column_81', 'column_82', 'column_83', 'column_84', 'column_85', 'column_86', 'column_87', 'column_88', 'column_89', 'column_90', 'column_91', 'column_92', 'column_93', 'column_94', 'column_95', 'column_96', 'column_97', 'column_98', 'column_99', 'column_100', 'column_101', 'column_102', 'column_103', 'column_104', 'column_105', 'column_106', 'column_107', 'column_108', 'column_109', 'column_110', 'column_111', 'column_112', 'column_113', 'column_114', 'column_115', 'column_116', 'column_117', 'column_118', 'column_119', 'column_120', 'column_121', 'column_122', 'column_123', 'column_124', 'column_125', 'column_126', 'column_127', 'column_128', 'column_129', 'column_130', 'column_131', 'column_132', 'column_133', 'column_134', 'column_135', 'column_136', 'column_137', 'column_138', 'column_139', 'column_140', 'column_141', 'column_142', 'column_143', 'column_144', 'column_145', 'column_146', 'column_147', 'column_148', 'column_149', 'column_150', 'column_151', 'column_152', 'column_153', 'column_154', 'column_155', 'column_156', 'column_157', 'column_158', 'column_159', 'column_160', 'column_161', 'column_162', 'column_163', 'column_164', 'column_165', 'column_166', 'column_167', 'column_168', 'column_169', 'column_170', 'column_171', 'column_172', 'column_173', 'column_174', 'column_175', 'column_176', 'column_177', 'column_178', 'column_179', 'column_180', 'column_181', 'column_182', 'column_183', 'column_184', 'column_185', 'column_186', 'column_187', 'column_188', 'column_189', 'column_190', 'column_191', 'column_192', 'column_193', 'column_194', 'column_195', 'column_196', 'column_197', 'column_198', 'column_199', 'column_200', 'column_201', 'column_202', 'column_203', 'column_204', 'column_205', 'column_206', 'column_207', 'column_208', 'column_209', 'column_210', 'column_211', 'column_212', 'column_213', 'column_214', 'column_215', 'column_216', 'column_217', 'column_218', 'column_219', 'column_220', 'column_221', 'column_222', 'column_223', 'column_224', 'column_225', 'column_226', 'column_227', 'column_228', 'column_229', 'column_230', 'column_231', 'column_232', 'column_233', 'column_234', 'column_235', 'column_236', 'column_237', 'column_238', 'column_239', 'column_240', 'column_241', 'column_242', 'column_243', 'column_244', 'column_245', 'column_246', 'column_247', 'column_248', 'column_249', 'column_250', 'column_251', 'column_252', 'column_253', 'column_254', 'column_255', 'column_256'}; predictors = inputTable(:, predictorNames); response = inputTable.column_257;

回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Statistics and Machine Learning Toolbox 的更多信息

标签

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by