How to calculate the NN outputs manually?
2 次查看(过去 30 天)
显示 更早的评论
Can anyway help me explaining manual calculation for testing outputs with trained weights and bias? Seems it does not give the correct answers when I directly substitute my inputs to the equations (Transfer function equations). Answers are different than what I get from MATLAB NN toolbox. How is it possible to get a large number as an output (eg: 100) when the output node has a transfer function, because as an example output from the "logistic" transfer function is always between 0 and 1?
0 个评论
采纳的回答
Matthew Eicholtz
2016-5-6
If you use a squashing function on the output, then yes, it is impossible to get a result of 100 at an output. If you need to have outputs outside [0,1] or [-1,1], which are typical ranges for many squashing functions, I suggest using a linear transfer function on the output (or a rectified linear unit).
As for your main question, here is an example of how to calculate outputs manually if you have trained weights and biases. Suppose you had an input x that is 100-by-1 and 1000 hidden layer neurons (so a weight matrix w1 that is 100-by-1000 and bias b1 that is 1000-by-1).
Then, the input to the hidden layer is
z1 = w1'*x+b1;
and the output of the hidden layer is
h1 = f(z1); %where f is the hidden activation function (e.g. logistic, tanh, ReLU)
Next, if you have a single neuron in the output layer, you would have a second weight matrix w2 that is 1000-by-1 and a scalar bias b2. The output to the whole network is then given by
z2 = w2'*h+b2;
h2 = g(z2); %where g is the output activation function, not necessarily the same as f()
Hope this helps!
更多回答(2 个)
Greg Heath
2016-5-8
By default,
1. The hidden node transfer function is TANSIG (TANH)
2. The output node transfer function is PURELIN (LINEAR)
3. Inputs and targets will be AUTOMATICALLY transformed
to [-1,1] for calculating purposes
4. The outputs will be AUTOMATICALLY transformed from
[ -1,1] to the original target scale.
Hope this helps.
Greg
2 个评论
Amir Qolami
2020-4-12
For apply mapminmax to inputs:
xoffset = net.Inputs{1}.processSettings{1}.xoffset; gain = net.Inputs{1}.processSettings{1}.gain; ymin = net.Inputs{1}.processSettings{1}.ymin; In0 = bsxfun(@plus,bsxfun(@times,bsxfun(@minus,inputs,xoffset),gain),ymin);
And for apply reverse mapminmax to outputs:
gain = net.outputs{end}.processSettings{:}.gain; ymin = net.outputs{end}.processSettings{:}.ymin; xoffset = net.outputs{end}.processSettings{:}.xoffset; output = bsxfun(@plus,bsxfun(@rdivide,bsxfun(@minus,outputs,ymin),gain),xoffset);
hassan khatir
2023-7-19
use this function:
function y2=sim2(net,x)
xoffset=net.inputs{1}.processSettings{1}.xoffset;
gain=net.inputs{1}.processSettings{1}.gain;
ymin=net.inputs{1}.processSettings{1}.ymin;
w1 = net.IW{1}; % (10x6)
w2 = net.LW{2}; % (2x10)
b1 = net.b{1}; % (10x1)
b2 = net.b{2};
% Input 1
y1 = (x-xoffset).*gain+ymin;
% Layer 1
a1 = 2 ./ (1 + exp(-2*(repmat(b1,1,size(x,2)) + w1*y1))) - 1;
% output
outputs=repmat(b2,1,size(x,2)) + w2*a1;
gain = net.outputs{2}.processSettings{:}.gain;
ymin = net.outputs{2}.processSettings{:}.ymin;
xoffset = net.outputs{2}.processSettings{:}.xoffset;
y2 = (outputs-ymin)./gain + xoffset;
end
0 个评论
另请参阅
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!