Need help to overcome this error 'Dimensions of matrices being concatenated are not consistent.' Any idea/comment is appreciated!

4 次查看(过去 30 天)
I have the following code:
phi1_12 = 0;
phi1_13 = 0;
A = pi;
a = cos(A/2);
b = -1i*sin(A/2);
ai = cos(A/2);
bi = -b;
S = @(theta)sin(theta);
C = @(theta)cos(theta);
zeta = 1;
ep1_12 = exp(1i*phi1_12);
ep1_13 = exp(1i*phi1_13);
ep1_12c = exp(-1i*phi1_12);
ep1_13c = exp(-1i*phi1_13);
ep2_12 = @(phi2_12)exp(1i*phi2_12);
ep2_13 = @(phi2_13)exp(1i*phi2_13);
%
ep2_12c = @(phi2_12)exp(-1i*phi2_12);
ep2_13c = @(phi2_13)exp(-1i*phi2_13);
%
ep3_12 = @(phi3_12)exp(1i*phi3_12);
ep3_13 = @(phi3_13)exp(1i*phi3_13);
%
ep3_12c = @(phi3_12)exp(-1i*phi3_12);
ep3_13c = @(phi3_13)exp(-1i*phi3_13);
%
ep4_12 = @(phi4_12)exp(1i*phi4_12);
ep4_13 = @(phi4_13)exp(1i*phi4_13);
%
ep4_12c = @(phi4_12)exp(-1i*phi4_12);
ep4_13c = @(phi4_13)exp(-1i*phi4_13);
%
ep5_12 = @(phi5_12)exp(1i*phi5_12);
ep5_13 = @(phi5_13)exp(1i*phi5_13);
%
ep5_12c = @(phi5_12)exp(-1i*phi5_12);
ep5_13c = @(phi5_13)exp(-1i*phi5_13);
U1 = @(theta)[a,b.*ep1_12.*C(theta),b.*ep1_13.*S(theta);-bi.*ep1_12c.*C(theta),ai.*C(theta).^2 + zeta.*S(theta).^2,(ai - zeta).*exp(-1i.*(phi1_12-phi1_13)).*S(theta).*C(theta);-bi.*ep1_13c.*S(theta),(ai - zeta).*exp(1i.*(phi1_12-phi1_13)).*S(theta).*C(theta),ai.*S(theta).^2 + zeta.*C(theta).^2];
U2 = @(theta,phi2_12,phi2_13)[a,b.*ep2_12(phi2_12).*C(theta),b.*ep2_13(phi2_13).*S(theta);-bi.*ep2_12c(phi2_12).*C(theta),ai.*C(theta).^2 + zeta.*S(theta).^2,(ai - zeta).*exp(-1i.*(phi2_12-phi2_13)).*S(theta).*C(theta);-bi.*ep2_13c(phi2_13).*S(theta),(ai - zeta).*exp(1i.*(phi2_12-phi2_13)).*S(theta).*C(theta),ai.*S(theta).^2 + zeta.*C(theta).^2];
U3 = @(theta,phi3_12,phi3_13)[a,b.*ep3_12(phi3_12).*C(theta),b.*ep3_13(phi3_13).*S(theta);-bi.*ep3_12c(phi3_12).*C(theta),ai.*C(theta).^2 + zeta.*S(theta).^2,(ai - zeta).*exp(-1i.*(phi3_12-phi3_13)).*S(theta).*C(theta);-bi.*ep3_13c(phi3_13).*S(theta),(ai - zeta).*exp(1i.*(phi3_12-phi3_13)).*S(theta).*C(theta),ai.*S(theta).^2 + zeta.*C(theta).^2];
U4 = @(theta,phi4_12,phi4_13)[a,b.*ep4_12(phi4_12).*C(theta),b.*ep4_13(phi4_13).*S(theta);-bi.*ep4_12c(phi4_12).*C(theta),ai.*C(theta).^2 + zeta.*S(theta).^2,(ai - zeta).*exp(-1i.*(phi4_12-phi4_13)).*S(theta).*C(theta);-bi.*ep4_13c(phi4_13).*S(theta),(ai - zeta).*exp(1i.*(phi4_12-phi4_13)).*S(theta).*C(theta),ai.*S(theta).^2 + zeta.*C(theta).^2];
U5 = @(theta,phi5_12,phi5_13)[a,b.*ep5_12(phi5_12).*C(theta),b.*ep5_13(phi5_13).*S(theta);-bi.*ep5_12c(phi5_12).*C(theta),ai.*C(theta).^2 + zeta.*S(theta).^2,(ai - zeta).*exp(-1i.*(phi5_12-phi5_13)).*S(theta).*C(theta);-bi.*ep5_13c(phi5_13).*S(theta),(ai - zeta).*exp(1i.*(phi5_12-phi5_13)).*S(theta).*C(theta),ai.*S(theta).^2 + zeta.*C(theta).^2];
%
%
%
%
U = @(theta,phi2_13,phi2_12,phi3_12,phi3_13,phi4_12,phi4_13,phi5_12,phi5_13)U5(theta,phi5_12,phi5_13)*U4(theta,phi4_12,phi4_13)*U3(theta,phi3_12,phi3_13)*U2(theta,phi2_12,phi2_13)*U1(theta);
sel = @(U,r,c)U(r,c); % indexing the U(2,1) matrix element
U21 = @(theta,phi2_13,phi2_12,phi3_12,phi3_13,phi4_12,phi4_13,phi5_12,phi5_13)sel(U(theta,phi2_13,phi2_12,phi3_12,phi3_13,phi4_12,phi4_13,phi5_12,phi5_13),2,1);
N = 5;
t = pi/4;
%
% x = zeros(20);
for i = 1:N
phi1 = i*pi/N;
for j = 1:N
phi2 = j*pi/N;
for k = 1:N
phi3 = k*pi/N;
for l = 1:N
phi4 = l*pi/N;
for m = 1:N
phi5 = m*pi/N;
for n = 1:N
phi6 = n*pi/N;
for o = 1:N
phi7 = o*pi/N;
for p = 1:N
phi8 = p*pi/N;
J(i,j,k,l,m,n,o,p) = abs((1/t)*integral(@(theta)real(U21(theta,phi1,phi2,phi3,phi4,phi5,phi6,phi7,phi8)),0,t) - real(U21(0,phi1,phi2,phi3,phi4,phi5,phi6,phi7,phi8))) + abs((1/t)*integral(@(theta)abs(U21(theta,phi1,phi2,phi3,phi4,phi5,phi6,phi7,phi8)),0,t) - 1);
end
end
end
end
end
end
end
end
I already added '.*' and '.^' instead of * and ^ but still I am confused why the matrices are not consistent. I had checked them individually like for U1,U2... they do work!.. but there's problem while integrating it inside the for loop.

采纳的回答

Walter Roberson
Walter Roberson 2016-5-18
For scalar-valued problems, the function y = fun(x) must accept a vector argument, x, and return a vector result, y
Your U1 through U5 functions are constructing arrays of results which do not take into account that theta will not be a scalar.
  2 个评论
Walter Roberson
Walter Roberson 2016-5-18
U = @(th, phi2_13, phi2_12, phi3_12, phi3_13, phi4_12, phi4_13, phi5_12, phi5_13) arrayfun( @(theta) U5(theta,phi5_12,phi5_13) * U4(theta,phi4_12,phi4_13) * U3(theta,phi3_12,phi3_13) * U2(theta,phi2_12,phi2_13) * U1(theta), th) ;

请先登录,再进行评论。

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Loops and Conditional Statements 的更多信息

产品

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by