k-means clustering algorithm

10 次查看(过去 30 天)
zhala sarkawt
zhala sarkawt 2016-5-22
For the data set shown below, execute the k-means clustering algorithm with k=2 till convergence. You should declare convergence when the cluster assignments for the examples no longer change. As initial values, set µ1 and µ2 equal to x(1) and x(3) respectively. Show your calculations for every iteration. x1 x2 1 1 1,5 2 2 1 2 0,5 4 3 5 4 6 3 6 4
1. You should start your calculation first by initializing your µ1 and µ2 as shown below. µ1 = x(1) =(1,1) µ2 = x(3) =(2,1) 2. For every iteration till convergence find c(i) for i = {1,2,3,4,5,6,7,8} then compute the average for each cluster and reassign the µ1 and µ2 3. Repeat 2 till convergence
  5 个评论
Image Analyst
Image Analyst 2016-5-23
Thanks for the correction - apparently I overlooked it.

请先登录,再进行评论。

回答(1 个)

Image Analyst
Image Analyst 2016-5-23
Hint:
x1x2 = [...
1 1
1.5 2
2 1
2 0.5
4 3
5 4
6 3
6 4]
x1 = x1x2(:, 1);
x2 = x1x2(:, 2);
mu1 = [1,1];
mu2 = [2,1];
for k = 1 : 4
indexes = kmeans(x1x2, 2, 'start', [mu1;mu2])
mu1 = mean(x1x2(indexes == 1, :), 1)
mu2 = mean(x1x2(indexes == 2, :), 1)
end

类别

Help CenterFile Exchange 中查找有关 Statistics and Machine Learning Toolbox 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by