Crack detection on concrete

4 次查看(过去 30 天)
Fairuz Husna
Fairuz Husna 2016-7-18
Hi, i have problem in measuring the length and width the crack image. i have follow the code but it only measure straight line (endpoint). I want the measurement by following the crack pattern. Please help me on this.
%load image
path=imgetfile();
originalImage1=imread(path);
imshow(originalImage1);
%image to grayscale
originalImage = rgb2gray(originalImage1);
figure
imshow(originalImage);
%treshold
thresholdValue = 100;
binaryImage = originalImage > thresholdValue;
binaryImage = imfill(binaryImage, 'holes');
hold on;
% maxYValue = ylim;
% line([thresholdValue, thresholdValue], maxYValue, 'Color', 'r');
% annotationText = sprintf('Thresholded at %d gray levels', thresholdValue);
% text(double(thresholdValue + 5), double(0.5 * maxYValue(2)), annotationText, 'FontSize', 10, 'Color', [0 .5 0]);
% text(double(thresholdValue - 70), double(0.94 * maxYValue(2)), 'Background', 'FontSize', 10, 'Color', [0 0 .5]);
% text(double(thresholdValue + 50), double(0.94 * maxYValue(2)), 'Foreground', 'FontSize', 10, 'Color', [0 0 .5]);
figure
imshow(binaryImage);
% bw = bwareaopen(binaryImage,100,8);
bw= bwareaopen(binaryImage, round(0.1*numel(binaryImage)));
figure
imshow(bw)
g=bwmorph(bw,'clean');
figure
imshow(g);
% %labeled image (on hold)
labeledImage = bwlabel(g,4);
figure
imshow(labeledImage, []);
%colored label image
coloredLabels = label2rgb (labeledImage, 'hsv', 'k', 'shuffle');
figure
imshow(coloredLabels);
axis image;
%blobmeasurement
blobMeasurements = regionprops(labeledImage, originalImage, 'all');
numberOfBlobs = size(blobMeasurements, 1);
figure
imshow(originalImage);
axis image; % Make sure image is not artificially stretched because of screen's aspect ratio.
hold on;
boundaries = bwboundaries(binaryImage);
numberOfBoundaries = size(boundaries, 1);
for k = 1 : numberOfBoundaries
thisBoundary = boundaries{k};
plot(thisBoundary(:,2), thisBoundary(:,1), 'g', 'LineWidth', 2);
end
hold off;
% Measure the area
measurements = regionprops(labeledImage, 'Area');
boundaries = bwboundaries(binaryImage);
numberOfBoundaries = size(boundaries, 1);
for blobIndex = 1 : numberOfBoundaries
thisBoundary = boundaries{blobIndex};
x = thisBoundary(:, 2); % x = columns.
y = thisBoundary(:, 1); % y = rows.
% Find which two bounary points are farthest from each other.
maxDistance = -inf;
for k = 1 : length(x)
distances = sqrt( (x(k) - x) .^ 2 + (y(k) - y) .^ 2 );
[thisMaxDistance, indexOfMaxDistance] = max(distances);
if thisMaxDistance > maxDistance
maxDistance = thisMaxDistance;
index1 = k;
index2 = indexOfMaxDistance;
end
end
% Find the midpoint of the line.
xMidPoint = mean([x(index1), x(index2)]);
yMidPoint = mean([y(index1), y(index2)]);
longSlope = (y(index1) - y(index2)) / (x(index1) - x(index2))
perpendicularSlope = -1/longSlope
% Use point slope formula (y-ym) = slope * (x - xm) to get points
y1 = perpendicularSlope * (1 - xMidPoint) + yMidPoint;
y2 = perpendicularSlope * (columns - xMidPoint) + yMidPoint;
% Get the profile perpendicular to the midpoint so we can find out when if first enters and last leaves the object.
[cx,cy,c] = improfile(binaryImage,[1, columns], [y1, y2], 1000);
% Get rid of NAN's that occur when the line's endpoints go above or below the image.
c(isnan(c)) = 0;
firstIndex = find(c, 1, 'first');
lastIndex = find(c, 1, 'last');
% Compute the distance of that perpendicular width.
perpendicularWidth = sqrt( (cx(firstIndex) - cx(lastIndex)) .^ 2 + (cy(firstIndex) - cy(lastIndex)) .^ 2 );
% Get the average perpendicular width. This will approximately be the area divided by the longest length.
averageWidth = measurements(blobIndex).Area / maxDistance;
% Plot the boundaries, line, and midpoints over the two images.
% Plot the boundary over the gray scale image
subplot(2, 2, 3);
plot(x, y, 'y-', 'LineWidth', 3);
% For this blob, put a line between the points farthest away from each other.
line([x(index1), x(index2)], [y(index1), y(index2)], 'Color', 'r', 'LineWidth', 3);
plot(xMidPoint, yMidPoint, 'r*', 'MarkerSize', 15, 'LineWidth', 2);
% Plot perpendicular line. Make it green across the whole image but magenta inside the blob.
line([1, columns], [y1, y2], 'Color', 'g', 'LineWidth', 3);
line([cx(firstIndex), cx(lastIndex)], [cy(firstIndex), cy(lastIndex)], 'Color', 'm', 'LineWidth', 3);
% Plot the boundary over the binary image
subplot(2, 2, 4);
plot(x, y, 'y-', 'LineWidth', 3);
% For this blob, put a line between the points farthest away from each other.
line([x(index1), x(index2)], [y(index1), y(index2)], 'Color', 'r', 'LineWidth', 3);
plot(xMidPoint, yMidPoint, 'r*', 'MarkerSize', 15, 'LineWidth', 2);
% Plot perpendicular line. Make it green across the whole image but magenta inside the blob.
line([1, columns], [y1, y2], 'Color', 'g', 'LineWidth', 3);
line([cx(firstIndex), cx(lastIndex)], [cy(firstIndex), cy(lastIndex)], 'Color', 'm', 'LineWidth', 3);
message = sprintf('The longest line is red.\nPerpendicular to that, at the midpoint, is green.\nMax distance for blob #%d = %.2f\nPerpendicular distance at midpoint = %.2f\nAverage perpendicular width = %.2f (approximately\nArea = %d', ...
blobIndex, maxDistance, perpendicularWidth, averageWidth, measurements(blobIndex).Area);
fprintf('%s\n', message);
uiwait(helpdlg(message));
end
hold off;
  1 个评论
KAMOOSH BABA SHAIK
% Use point slope formula (y-ym) = slope * (x - xm) to get points
y1 = perpendicularSlope * (1 - xMidPoint) + yMidPoint;
y2 = perpendicularSlope * (columns - xMidPoint) + yMidPoint;
in y2 what i can replace to get the answer
in matlab shows like this,
Unrecognized function or variable 'columns'.
Error in lengthwidth (line 90)
y2 = perpendicularSlope * (columns - xMidPoint) + yMidPoint;

请先登录,再进行评论。

回答(2 个)

Walter Roberson
Walter Roberson 2016-7-18
Skeletonize and then bwdistgeodesic
  1 个评论
Fairuz Husna
Fairuz Husna 2016-7-19
can you show how can i use bwdistgeodesic in the code above. i'm new with matlab.

请先登录,再进行评论。


Preetham Manjunatha
Preetham Manjunatha 2024-12-19
编辑:Preetham Manjunatha 2025-5-16
Here is the MATLAB Crack segmentation and Crack width, length and area estimation codes to calculate/estimate the crack area, width and length. In addition, this package assumes the crack is segmented either using morphological method or multiscale gradient-based or deep learning semantic segmentation methods. This package estimates the crack area, width and length (pixel scale can be provided to estimate these physical quantities). Lastly, the semantic segmentation and object detection metrics for the cracks can be found using Cracks binary class bounding box and segmentation metrics package.

类别

Help CenterFile Exchange 中查找有关 Image Segmentation and Analysis 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by