Manipulation of matrix addition and multiplication.

1 次查看(过去 30 天)
Hello Friends,
I have the following:
A = [1 2 3; 4 5 6; 7 8 9];
B = [10 11 12; 13 14 15];
[N1, D1] = size(A);
[N2, D2] = size(B);
A_sq = sum(A.^2, 2);
B_sq = sum(B.^2, 2)';
D = A_sq(:,ones(1,N2)) + B_sq(ones(1,N1),:) - 2.*(A*B');
where D is N1 x D1 matrix.
I want to write expression for D in one single step, i.e., something like this (this is for illustration purpose, but it should compute the same Euclidean distance as the code above):
D = sum(X - C).^2;
I will appreciate any advise.
  3 个评论
the cyclist
the cyclist 2016-8-16
Also, this equivalent formulation seems closer to your prototype formula, but I still don't quite see a simpler set of matrix operations to get you there:
D = bsxfun(@plus,diag(A*A'),diag(B*B')') - 2.*(A*B')
(I think this version is likely more computationally intensive, but somewhat more elegant.)

请先登录,再进行评论。

采纳的回答

Matt J
Matt J 2016-8-16
编辑:Matt J 2016-8-16
Bp=permute(B,[3,2,1]);
D=reshape( sum(bsxfun(@minus, A, Bp).^2,2)) , N1,N2);
  5 个评论
Matt J
Matt J 2016-8-18
Well... permutes are expensive as compared to reshapes. I was seeking to minimize them. It is possible to do this entirely without permutes/transposes if the OP had organized the 3x1 vectors in matrix columns instead of matrix rows.
the cyclist
the cyclist 2016-8-18
I repmat'ed his matrices to make them pretty huge, and found nearly identical timing for the reshape algorithm and the permute algorithm.
Interestingly, my original solution (in the comments)
D = bsxfun(@plus,sum(A.^2, 2),sum(B'.^2, 1)) - 2.*(A*B');
absolutely crushed both of these in timing.
So, as always, best to try to solve the problem (multiple ways if possible!), and then do optimization.

请先登录,再进行评论。

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Loops and Conditional Statements 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by