How do I plot/solve the phase portrait for functions with a range?

1 次查看(过去 30 天)
For example, if I have the following differential equation x'' = k
where k is equal to -r when x>0 r when x<0
How would I solve the above using ode45.
In this case there is a constant "r" (arbitrary), how would I use ode45 to solve that?
Shown below is my attempt at trying to at least form the graph of one equation (but I can't get MATLAB to reproduce the analytical solution). I'm quite new to this so any help would be appreciated.
f = @(t,y) [y(2);-r];
hold on
for y20=[0 0.2 0.4 0.6 2]
[ts,ys] = ode45(f,[0,20],[0;y20]);
plot(ys(:,1),ys(:,2))
end
hold off

采纳的回答

Mischa Kim
Mischa Kim 2016-10-20
Afthab, see this answer.
  4 个评论
Afthab
Afthab 2016-10-20
编辑:Afthab 2016-10-20
x>0, so the solution should look something like this based on the hand analytical solution.
Mischa Kim
Mischa Kim 2016-10-20
Gotcha. Try this:
function my_DE()
x0 = 0;
Dx0 = 0.2;
r = 1;
tspan = linspace(0,2,100);
options = odeset('RelTol',1e-8,'AbsTol',1e-10);
[~,X] = ode45(@DE, tspan,[x0; Dx0],options,r);
plot(X(:,1),X(:,2))
grid
end
function dX = DE(~,x,r)
dX = [x(2); k(x(1),r)];
end
function fval = k(x,r)
if (x < 0)
fval = +r;
else
fval = -r;
end
end
This needs some fine tuning.

请先登录,再进行评论。

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Mathematics 的更多信息

标签

尚未输入任何标签。

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by