Boundary conditions with stiff problems
4 次查看(过去 30 天)
显示 更早的评论
Hello, I'm trying to solve a system of PDEs that depends on space (1 dimension) and time. I want to solve it using a second order discretization in space and then using ode23s to solve the system of ODEs (method of lines).
The problem is that I have a laplacian operator and I can just integrate in the interior nodes (let's say from 2 to n-1). The values for nodes 1 and n depend on their neighbours and should be updated at each time step.
How could I set these restrictions to solver?
Here is the scheme:
function dydt = fun(t,u)
for j = 2:n-1
impose right hand side function
end
%Now I want to impose the value in y(1) and y(end)
end
0 个评论
回答(3 个)
Torsten
2016-12-8
Boundary conditions don't depend on neighbour values, but are given independently.
What are the boundary conditions for your PDE ?
Best wishes
Torsten.
Torsten
2016-12-9
Use the equations
(u(2)-u(1))/(x(2)-x(1)) = G(u(1))
(u(n)-u(n-1))/(x(n)-x(n-1)) = G(u(n))
to solve for u(1) (u at 0) and u(n) (u at 1).
Then use these values for the discretization in the inner grid points.
Best wishes
Torsten.
0 个评论
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Eigenvalue Problems 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!