I want to do a parameter sensitivity analysis to my model

1 次查看(过去 30 天)
Hello,
I have a model equation contains some parameters, I want to do a parameter sensitivity analysis to some parameters to justify the values of the parameters. How can I do that using Matlab?
I am doing two things:
The first is solving the model equation for qi(t) and set the solution equal to (CxVpl= 3.8 * 3150) to get a value for "t" which must be positive.
But what I obtained is:
sol =
Empty sym: 0-by-1
So, I want to do a sensitivity analysis to the parameters to get a valid solution.
The model equation,
dqidt=(fi_Ri*Nc0*ai\(Kgr+di))*(exp(Kgr*t)-exp(-di*t))+(fi_Ri*Ni0*exp(-di*t))+fih_Rih_Nih-Kei*qi
The solution for qi(t), by taking Laplace Transform,
qi(t) =
(Nih*Rih*fih)/Kei + (exp(Kgr*t)*(Kgr + di))/(Nc0*Ri*ai*fi*(Kei + Kgr)) - (exp(-di*t)*(- Nc0*Ni0*ai*Ri^2*fi^2 + Kgr + di))/(Nc0*Ri*ai*fi*(Kei - di)) + (exp(-Kei*t)*(Nc0*ai*qi0*Kei^3*Ri*fi + Nc0*ai*qi0*Kei^2*Kgr*Ri*fi - Nc0*Ni0*ai*Kei^2*Ri^2*fi^2 - Nc0*ai*qi0*Kei^2*Ri*di*fi - Nc0*Nih*Rih*ai*fih*Kei^2*Ri*fi + Kei*Kgr^2 - Nc0*Ni0*ai*Kei*Kgr*Ri^2*fi^2 - Nc0*ai*qi0*Kei*Kgr*Ri*di*fi - Nc0*Nih*Rih*ai*fih*Kei*Kgr*Ri*fi + 2*Kei*Kgr*di + Nc0*Nih*Rih*ai*fih*Kei*Ri*di*fi + Kei*di^2 + Nc0*Nih*Rih*ai*fih*Kgr*Ri*di*fi))/(Kei*Nc0*Ri*ai*fi*(Kei - di)*(Kei + Kgr))
The parameters:
fi_Ri (Immune biomarker shedding rate) =10.925*10^(-6) ;
ai (Immune cell activation rate) =4.74 ;
Nc0 (Initial number of tumor cells) =1 ;
Kgr (Tumor growth rate) = 5.78*10^(-3);
di (Immune cell death rate) =11.31 ;
Ni0 (Initial number of immune cells) =1 ;
fih_Rih_Nih (Immune biomarker healthy influx) =7.16*10^(4) ;
Kei (Immune biomarker elimination rate) = 2.14
C (cutoff limit) = 3.8;
The code for obtaining the value of "t":
syms q(t)
q(t) = ((10.925*10^(-6)*4.74*1)\((5.78*10^(-3)+11.31)*(5.78*10^(-3)+2.14)))*exp(5.78*10^(-3)*t)+(((4.74*1)\((5.78*10^(-3)+11.31)*(2.14-11.31)))-((4.74*1)\((5.78*10^(-3)+11.31)*(5.78*10^(-3)+2.14)))-(1\(2.14-11.31)))*(10.925*10^(-6)*exp(-2.14*t))+(7.16*10^(4)*exp(-2.14*t))+(1-((4.74*1)\(5.78*10^(-3)+11.31)))*((10.925*10^(-6)\(2.14-11.31))*exp(-11.31*t))-(3150*3.8)==0 ;
sol = vpasolve(q)
The second thing is plotting a relation between "Blood biomarker concentration" and "Time".
The code:
function [t,qi] = call_dstate()
tspan = [0 900]; % set time interval
qi0 = 0; % set initial condition
%cutoff=c*vpl;
cutoff=3.8*3150;
threshold=1*3150;
% dstate evaluates r.h.s. of the ode
[t,qi] = ode45( @dstate ,tspan ,qi0);
%plot(t,qi)
plot(t,qi,'-b')
hline1=refline(0,cutoff);
hline1.Color='g';
hline2=refline(0,threshold);
hline2.Color='r';
xlabel ('Time')
ylabel ('Blood Biomarker Concentration')
title ('Immune Biomarker Shedding by Immune & Healthy cells')
disp([t,qi]) % displays t and qi(t)
function dqidt = dstate (t,qi)
fi_Ri=10.925*10^(-6) ; ai=4.74 ; Nc0=1 ; Kgr= 5.78*10^(-3);di=11.31 ;Ni0=1 ;fih_Rih_Nih =7.16*10^(4) ; Kei= 2.14 ;
dqidt=(fi_Ri*Nc0*ai\(Kgr+di))*(exp(Kgr*t)-exp(-di*t))+(fi_Ri*Ni0*exp(-di*t))+fih_Rih_Nih-Kei*qi;
end
end
  3 个评论
Esraa Abdelkhaleq
I am doing two things:
The first is solving the model equation for qi(t) and set the solution equal to (CxVpl= 3.8 * 3150) to get a value for "t" which must be positive.
But what I obtained is:
sol =
Empty sym: 0-by-1
So, I want to do a sensitivity analysis to the parameters to get a valid solution.
The model equation,
dqidt=(fi_Ri*Nc0*ai\(Kgr+di))*(exp(Kgr*t)-exp(-di*t))+(fi_Ri*Ni0*exp(-di*t))+fih_Rih_Nih-Kei*qi
The solution for qi(t), by taking Laplace Transform,
qi(t) =
(Nih*Rih*fih)/Kei + (exp(Kgr*t)*(Kgr + di))/(Nc0*Ri*ai*fi*(Kei + Kgr)) - (exp(-di*t)*(- Nc0*Ni0*ai*Ri^2*fi^2 + Kgr + di))/(Nc0*Ri*ai*fi*(Kei - di)) + (exp(-Kei*t)*(Nc0*ai*qi0*Kei^3*Ri*fi + Nc0*ai*qi0*Kei^2*Kgr*Ri*fi - Nc0*Ni0*ai*Kei^2*Ri^2*fi^2 - Nc0*ai*qi0*Kei^2*Ri*di*fi - Nc0*Nih*Rih*ai*fih*Kei^2*Ri*fi + Kei*Kgr^2 - Nc0*Ni0*ai*Kei*Kgr*Ri^2*fi^2 - Nc0*ai*qi0*Kei*Kgr*Ri*di*fi - Nc0*Nih*Rih*ai*fih*Kei*Kgr*Ri*fi + 2*Kei*Kgr*di + Nc0*Nih*Rih*ai*fih*Kei*Ri*di*fi + Kei*di^2 + Nc0*Nih*Rih*ai*fih*Kgr*Ri*di*fi))/(Kei*Nc0*Ri*ai*fi*(Kei - di)*(Kei + Kgr))
The parameters:
fi_Ri (Immune biomarker shedding rate) =10.925*10^(-6) ;
ai (Immune cell activation rate) =4.74 ;
Nc0 (Initial number of tumor cells) =1 ;
Kgr (Tumor growth rate) = 5.78*10^(-3);
di (Immune cell death rate) =11.31 ;
Ni0 (Initial number of immune cells) =1 ;
fih_Rih_Nih (Immune biomarker healthy influx) =7.16*10^(4) ;
Kei (Immune biomarker elimination rate) = 2.14
C (cutoff limit) = 3.8;
The code for obtaining the value of "t":
syms q(t)
q(t) = ((10.925*10^(-6)*4.74*1)\((5.78*10^(-3)+11.31)*(5.78*10^(-3)+2.14)))*exp(5.78*10^(-3)*t)+(((4.74*1)\((5.78*10^(-3)+11.31)*(2.14-11.31)))-((4.74*1)\((5.78*10^(-3)+11.31)*(5.78*10^(-3)+2.14)))-(1\(2.14-11.31)))*(10.925*10^(-6)*exp(-2.14*t))+(7.16*10^(4)*exp(-2.14*t))+(1-((4.74*1)\(5.78*10^(-3)+11.31)))*((10.925*10^(-6)\(2.14-11.31))*exp(-11.31*t))-(3150*3.8)==0 ;
sol = vpasolve(q)
The second thing is plotting a relation between "Blood biomarker concentration" and "Time".
The code:
function [t,qi] = call_dstate()
tspan = [0 900]; % set time interval
qi0 = 0; % set initial condition
%cutoff=c*vpl;
cutoff=3.8*3150;
threshold=1*3150;
% dstate evaluates r.h.s. of the ode
[t,qi] = ode45( @dstate ,tspan ,qi0);
%plot(t,qi)
plot(t,qi,'-b')
hline1=refline(0,cutoff);
hline1.Color='g';
hline2=refline(0,threshold);
hline2.Color='r';
xlabel ('Time')
ylabel ('Blood Biomarker Concentration')
title ('Immune Biomarker Shedding by Immune & Healthy cells')
disp([t,qi]) % displays t and qi(t)
function dqidt = dstate (t,qi)
fi_Ri=10.925*10^(-6) ; ai=4.74 ; Nc0=1 ; Kgr= 5.78*10^(-3);di=11.31 ;Ni0=1 ;fih_Rih_Nih =7.16*10^(4) ; Kei= 2.14 ;
dqidt=(fi_Ri*Nc0*ai\(Kgr+di))*(exp(Kgr*t)-exp(-di*t))+(fi_Ri*Ni0*exp(-di*t))+fih_Rih_Nih-Kei*qi;
end
end
Thanks in advance.

请先登录,再进行评论。

回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Stochastic Differential Equation (SDE) Models 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by