How to calculate Akaike Information Criterion and BIC from a Neural Network?

17 次查看(过去 30 天)
I know "aic" function exists, but I don't know how to use it with fitting neural networks.
Any help?
Thank you in advance

采纳的回答

David Franco
David Franco 2017-8-28
After training the network and simulating the outputs:
[net,tr] = train(net,inputs,targets);
output = sim(net,inputs);
Get the parameters and calculate de criterions (Sarle, 1995):
% Getting the training targets
trainTargets = gmultiply(targets,tr.trainMask);
SSE = sse(net,trainTargets,output); % Sum of Squared Errors for the training set
n = length(tr.trainInd); % Number of training cases
p = length(getwb(net)); % Number of parameters (weights and biases)
% Schwarz's Bayesian criterion (or BIC) (Schwarz, 1978)
SBC = n * log(SSE/n) + p * log(n)
% Akaike's information criterion (Akaike, 1969)
AIC = n * log(SSE/n) + 2 * p
% Corrected AIC (Hurvich and Tsai, 1989)
AICc = n * log(SSE/n) + (n + p) / (1 - (p + 2) / n)
References:
  • Akaike, H. (1969), "Fitting Autoregressive Models for Prediction". Annals of the Institute of Statistical Mathematics, 21, 243-247.
  • Hurvich, C.M., and Tsai, C.L. (1989), "Regression and time-series model selection in small samples". Biometrika, 76, 297-307.
  • Sarle, W.S. (1995), "Stopped Training and Other Remedies for Overfitting". Proceedings of the 27th Symposium on the Interface of Computing Science and Statistics, 352-360.
  • Schwarz, G. (1978), "Estimating the Dimension of a Model". Annals of Statistics, 6, 461-464.

更多回答(1 个)

Michelle Wu
Michelle Wu 2017-2-17
编辑:Michelle Wu 2017-2-17

类别

Help CenterFile Exchange 中查找有关 Sequence and Numeric Feature Data Workflows 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by