Solving a system of ODE

4 次查看(过去 30 天)
Hello,
How can I solve a system of two ODE's as follows,
dNcdt= Nc(t)*Kgr- dc*Nc(t)*Ni(t)
dNidt= ai*Nc(t) - di*Ni(t)
To obtain Nc(t) and Ni(t).
Thanks in advance.

采纳的回答

Star Strider
Star Strider 2017-2-14
It is easier to let the Symbolic Math Toolbox do the algebra:
syms ai dc di Kgr Nc(t) Ni(t) t Y
Eq1 = diff(Nc) == Nc(t)*Kgr- dc*Nc(t)*Ni(t);
Eq2 = diff(Ni) == ai*Nc(t) - di*Ni(t);
[odesys, vrs] = odeToVectorField(Eq1, Eq2);
odefcn = matlabFunction(odesys, 'Vars',[t Y ai dc di Kgr])
odefcn =
function_handle with value:
@(t,Y,ai,dc,di,Kgr)[ai.*Y(2)-di.*Y(1);Kgr.*Y(2)-dc.*Y(1).*Y(2)]
The rest should be relatively straightforward for you to complete. To solve it numerically, begin with ode45, and if your equation turns out to be ‘stiff’ because of a wide variation in parameter magnitudes, and ode45 has problems, use ode15s or one of the other stiff solvers appropriate to your system.
  8 个评论
Esraa Abdelkhaleq
Esraa Abdelkhaleq 2017-2-15
OK. Thanks a lot for your help.
Star Strider
Star Strider 2017-2-15
My pleasure.
Out doing stuff for 3 hours (life intrudes) so just got back to this topic.
This code:
syms ai dc di fc fch fi fih Ke Kgr Nc(t) Ni(t) Rc Rch Ri Rih t Y Nc0 Nch0 Nih0 Ni0 qpl(t)
Eq1 = diff(Nc) == Nc(t)*Kgr- dc*Nc(t)*Ni(t);
Eq2 = diff(Ni) == ai*Nc(t) - di*Ni(t);
Eq3 = diff(qpl) == fc*Rc*Nc(t)+ fi*Ri*Ni(t)+fch*Rch*Nch0+ fih*Rih*Nih0-Ke*qpl(t) ;
[odesys, vrs] = odeToVectorField(Eq1, Eq2, Eq3)
odefcn = matlabFunction(odesys, 'Vars',[t Y ai dc di fc fch fi fih Ke Kgr Nc0 Nch0 Nih0 Ni0 Rc Rch Ri Rih])
produces:
odesys =
ai*Y[2] - di*Y[1]
Kgr*Y[2] - dc*Y[1]*Y[2]
Nch0*Rch*fch - Ke*Y[3] + Nih0*Rih*fih + Rc*fc*Y[2] + Ri*fi*Y[1]
vrs =
Ni
Nc
qpl
odefcn = @(t,Y,ai,dc,di,fc,fch,fi,fih,Ke,Kgr,Nc0,Nch0,Nih0,Ni0,Rc,Rch,Ri,Rih) [ai.*Y(2)-di.*Y(1);Kgr.*Y(2)-dc.*Y(1).*Y(2);-Ke.*Y(3)+Nch0.*Rch.*fch+Nih0.*Rih.*fih+Rc.*fc.*Y(2)+Ri.*fi.*Y(1)];
The ‘vrs’ output you can interpret as:
Y(1) = Ni
Y(2) = Nc
Y(3) = qpl
You have to supply all the values for the parameters, so you can then integrate it with ode45 or ode15s (or other solver, depending on your requirements).

请先登录,再进行评论。

更多回答(0 个)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by