How to implement nguyen widrow weight initialization ?
4 次查看(过去 30 天)
显示 更早的评论
Hi, I'm interested to use nguyen widrow weight initialization but i do not want to use the existing matlab function. I have the pseudo code and I want to try coding it myself. One thing I'm not sure on is how the technique calculate the norm of weights ? suppose I have input weights of [5x3] do i calculate the norm of entire matrix or column ? Thanks in advance
0 个评论
回答(2 个)
Ênio Viana
2018-5-18
In this link you can see a Matlab code implementation Stack Overflow but I didn't test this. See that code...
a = -1;
b = 1;
% WIDROW weights for Layer Input to Hidden Layer 1
sum_sq_wts = 0;
for k=1:30
iw(:,:) = zeros(num_input, nodes_hidden_layer);
for i=1:num_input
for j=1:nodes_hidden_layer
iw(i,j)=(b-a)*rand(1,1) + a;
sum_sq_wts = sum_sq_wts + (iw(i,j)*iw(i,j));
end
end
norm = sqrt(sum_sq_wts);
beta = 0.7*nodes_hidden_layer.^(1/num_input);
for i=1:num_input
for j=1:nodes_hidden_layer
iw(i,j) = beta*iw(i,j)/norm;
end
end
IW{k}=iw';
end
% WIDROW weights for Hidden Layer 1 to output Layer
sum_sq_wts = 0;
for k=1:30
lw(:,:) = zeros(nodes_hidden_layer,1);
for i=1:nodes_hidden_layer
for j=1:1
iw(i,j)=(b-a)*rand(1,1) + a;
sum_sq_wts = sum_sq_wts + iw(i,j)*iw(i,j);
end
end
norm = sqrt(sum_sq_wts);
beta = 0.7*nodes_hidden_layer.^(1/num_input);
for i=1:nodes_hidden_layer
for j=1:1
lw(i,j) = beta*lw(i,j)/norm;
end
end
LW{k}=lw';
end
WidNgu{1,1} = IW;
WidNgu{1,2} = LW;
另请参阅
产品
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!