system of equations with nonlinear constraint

1 次查看(过去 30 天)
Hi, I have a system of three linear equations and three unknowns as below:
x(1).*(A11-B)+x(2).*A12+x(3).*A13=0
x(1).*A12 +x(2).*(A22-B)+x(3).*A23=0
x(1).*A13 +x(3).*(A33-B)+x(2).*A23=0
applying the fsolve yields the obvious answer of [0 0 0], Therefore, I have to define the following nonlinear and linear constraints:
x(1)^2+x(2)^2+x(3)^2=1.0 & -1<=x(1),x(2),x(3)<=1
I'm familiar with fmincon but it is applicable for scalar functions when one wants to find min f(x). I wonder how can I solve the aforementioned problem? Thank you so much for your time and attention.
  2 个评论
Torsten
Torsten 2017-4-19
A11,A12,A13,A22,A23,A33,B are given constants ?
Best wishes
Torsten.
Mohammadfarid ghasemi
Yes, x is the 3*1 array of unknowns and the A11,A12,A13,A22,A23,A33,B are the known scalars.
Regards,
Farid

请先登录,再进行评论。

采纳的回答

Torsten
Torsten 2017-4-19
编辑:Torsten 2017-4-19
Then x is a normalized eigenvector to the minimum eigenvalue of the matrix
M=A*transpose(A)
where
A=[A11-B A12 A13;A12 A22-B A23;A13 A23 A33-B]
help eig
Best wishes
Torsten.
  3 个评论
Torsten
Torsten 2017-4-19
Take a look at this thread:
https://de.mathworks.com/matlabcentral/answers/328754-rotation-that-maximises-a-vector-length
You search for a vector "that minimizes a vector length".
Best wishes
Torsten.

请先登录,再进行评论。

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Nonlinear Optimization 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by