How do I structure a total variation denoising code?
4 次查看(过去 30 天)
显示 更早的评论
I have never use matlab before and have thrown in at the deep end with a total variation denoising question.
I have to implement the forward-backward splitting algorithm for the dual form of the total variation denoising problem. I've been sent an example code for the Lasso-primal:
wine_quality.m:
function [white_indicators, red_indicators]=wine_quality() dwhite=dlmread('../data/winequality-white.csv', ';', 1, 0); white_indicators=do_wine_quality(dwhite, 0.0003, 1000) dred=dlmread('../data/winequality-red.csv', ';', 1, 0); red_indicators=do_wine_quality(dred, 0.005, 1000) end
function x=do_wine_quality(data, lambda, iters) A=data(:, 1:11); b=data(:, 12); x0=zeros(11, 1); % L=norm(A)^2 is the factor of smoothness of g(x)=|Ax-b|^2 % This sets tau*L=0.9<=1. tau=0.9/norm(A)^2; x=lasso_fb(A, b, lambda, x0, tau, iters); end
lasso_fb.m:
function x=lasso_fb(A, b, lambda, x0, tau, iters) x=x0; for i=1:iters % z = x-tau grad g(x) x = prox_l1(tau, lambda, x - tau*A'*(A*x-b)); end end
prox_l1.m:
function xnext=prox_l1(tau, lambda, z) % Soft thresholding idx=abs(z)<=lambda; xnext=z-lambda*z./abs(z); xnext(idx)=0; end
How can I use this for the denoising problem?
0 个评论
回答(1 个)
Sudarshan Kolar
2017-4-26
Hello Cath,
I understand that you want to implement total variation denoising. Have you considered other resources as well, like:
https://www.mathworks.com/matlabcentral/fileexchange/16204-toolbox-sparse-optmization?focused=5175257&tab=example
https://www.mathworks.com/matlabcentral/fileexchange/52478-the-spectral-total-variation-denoising-algorithm
http://www.mathworks.com/matlabcentral/fileexchange/16201-toolbox-image?focused=5133334&tab=function
Hope that helps. Sorry for not being able to answer your question directly.
Sudarshan
0 个评论
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Denoising and Compression 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!