Estimates from Gaussian Process regression (function: `fitgpr`) for given set of hyperparameter
3 次查看(过去 30 天)
显示 更早的评论
I am interested in estimating y using Gaussian Process for given hyperparameters and noise parameter i.e. without optimizing for parameters.
In the following example; [3.5, 6.2, 0.2] are provided as initial guess parameters,
load(fullfile(matlabroot,'examples','stats','gprdata2.mat'))
sigma0 = 0.2;
kparams0 = [3.5, 6.2];
gprMdl2 = fitrgp(x,y,'KernelFunction','squaredexponential',...
'KernelParameters',kparams0,'Sigma',sigma0);
ypred2 = resubPredict(gprMdl2);
But I am interested in seeing model's response y and other properties (like: loglikelihood) precisely for parameters [3.5, 6.2, 0.2] not for optimized ones.
Thanks
0 个评论
采纳的回答
Gautam Pendse
2017-5-20
Hi Pankaj,
You probably want to use 'FitMethod','none' in the call to fitrgp. For more info, have a look at the doc for 'FitMethod':
https://www.mathworks.com/help/stats/fitrgp.html#namevaluepairarguments
Hope this helps,
Gautam
0 个评论
更多回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Gaussian Process Regression 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!