Time shifting property DTFT

23 次查看(过去 30 天)
Ch My
Ch My 2017-5-4
回答: Sk Group 2021-10-27
I am suppose to verify the time shifting property of DTFT, by letting x(n) = random sequence uniformly distributed between [0,1] over 0 <= n <= 20 and y(n) = x(n-2). Following is my code, however the plot did not shift by delay of 2. Can anyone help to rectify? Thank you.
clc, clear all, close all;
x=rand(1,21);n=0:20;
k=0:20;w=(pi/20)*k;
X=x*(exp(-1i*pi/500)).^(n'*k);
y=x;m=n+2;
Y=y*(exp(-1i*pi/500)).^(m'*k);
Y1=(exp(-1i*2).^w).*X;
subplot(2,2,1);plot(n,abs(fftshift(X)));
subplot(2,2,2);plot(n,abs(fftshift(Y)));

回答(3 个)

Santhana Raj
Santhana Raj 2017-5-4
I suppose this is what you want to do:
clc, clear all, close all;
x=rand(1,21);n=0:20;
k=0:20;w=(pi/20)*k;
X=x*(exp(-1i*pi/500*n'*k));
y=x;m=n+2;
Y=y*(exp(-1i*pi/500*n'*k));
subplot(1,2,1);plot(n,abs(X));
subplot(1,2,2);plot(m,abs(Y));
  1 个评论
Ch My
Ch My 2017-5-4
Thank you, but after trying i still did not see y(n) being delayed by 2.

请先登录,再进行评论。


Sk Group
Sk Group 2021-10-27

Sk Group
Sk Group 2021-10-27
Time shifting Prove: DFT{x(n-l)} = X(K)e^(-j(2*pi/N)kl

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by