Problem with CNN architecture for small images of size 6x6
1 次查看(过去 30 天)
显示 更早的评论
I'm trying to develop a CNN classifier for a large dataset of small images of size 6x6. I have modified the original code of an example (Train a Convolutional Neural Network Using Data in ImageDatastore) from MATLAB Help. I need to increase number of layers to the network more deep to get better results.
Original Code of CNN layers:
layers = [imageInputLayer([28 28 1]);
convolution2dLayer(5,20);
reluLayer();
maxPooling2dLayer(2,'Stride',2);
fullyConnectedLayer(5);
softmaxLayer();
classificationLayer()];
Modified Code of CNN layers:
% Define the convolutional neural network architecture.
layers = [imageInputLayer([6 6 1]);
convolution2dLayer(5,20,'Padding',3);
reluLayer();
maxPooling2dLayer(2,'Stride',2);
convolution2dLayer(5,20);
reluLayer();
maxPooling2dLayer(5,'Stride',2);
fullyConnectedLayer(5);
softmaxLayer();
classificationLayer()];
Now I am getting this error:
Error using nnet.cnn.layer.Layer>iInferSize (line 261)
Layer 7 is expected to have a different size.
It is expecting the pooling layer to have different size. I have tried 2x2 and 3x3 sizes of pooling layer but it gives the same errors. Please help me fix this issue so that I can add more number of layers to the CNN.
0 个评论
回答(1 个)
Javier Pinzón
2017-6-1
编辑:Javier Pinzón
2017-6-1
Hello Muhammad,
First of all, you have errors when calculating the output volumen of each layer. Lets check:
Convolution 1:
OutV1 = (6 - 5 + 3*2)/1 + 1 = 8
Maxpooling:
OutV2 = 8 / 2 = 4
Convolution 2:
OutV3 = (4 - 5)/1 + 1 = 0
And then... you dont have any output volume from convolution 2 ownwards... so you need to recalculate your filter sizes... I really recommend you to use sizes of 2 or 3 in the convolutions, and also add some padding of the size of the filter - 1 in each convolution layer, to keep a considerably volumen, i.e., if you use a filter of size of 3, use "padding" = 1, so you will have:
Out volume = (In - 3 + 2*1)/1 + 1 = In
Remember:
Output Volume = [("Input Volumen" - "Filter Size" + 2 * "Padding")/"Stride"] + 1
hope it helps if it is not too late =)
2 个评论
Javier Pinzón
2017-10-25
+1 is related to the "Bias", each layer has the activation neuron, for that reason there is a +1 in the formula
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Deep Learning Toolbox 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!