How to analyse the results of training of neural network
    5 次查看(过去 30 天)
  
       显示 更早的评论
    
Hi, i tried to create neural network for classification using nprtool and i tried to modify the code but i couldn't analyse the results and what should i do with this results .So Can anyone please tell me because i have no idea ? This is my code :
 x = patientInputs;
t = patientTargets;
 N=1012
 I=9
 O=2
[ I N ] = size(x) 
 [ O N ] = size(t) 
 Ntrn   = N-2*round(0.15*N)  % 708
 Ntrneq = Ntrn*O        %1416    
    %For a robust design desire Ntrneq >> Nw or
   H=10
    Hub = -1+ceil( (Ntrneq-O) / (I+O+1)) %   Hub =117
    Nw = (I+1)*H+(H+1)*O       % Number of unknown weights = 122
   %H << Hub = -1+ceil( (Ntrneq-O) / (I+O+1)) 
 Ntrials = 10
 rng(0)
 j=0
 for h =round([Hub/10, Hub/2, Hub])
    j  = j+1
    h  = h   %12
    Nw            = (I+1)*h+(h+1)*O  % 146 
    Ndof          = Ntrneq-Nw       %1270
    net           = patternnet(h);
    net.divideFcn = 'dividerand';           % 'dividetrain'
    for i = 1:Ntrials
        net                          = configure(net,x,t);
        [ net tr outputs regerrors ] = train(net,x,t);
        assignedclasses              = vec2ind(outputs);
        trueclasses = vec2ind(t);
        classerr                     = assignedclasses~=trueclasses;
        Nerr(i,j)                    = sum(classerr);
        % FrErr                      = Fraction of Errors (Nerr/N) 
        [FrErr(i,j),CM,IND,ROC]  = confusion(t,outputs);
        FN(i,j) = mean(ROC(:,1));    % Fraction of False Negatives
        TN(i,j) = mean(ROC(:,2)) ;   % Fraction of True Negatives
        TP(i,j) = mean(ROC(:,3));    % Fraction of True Positives
    end
 end
 PctErr=100*Nerr/N
And this are the resultas that i got :
Ntrn =
   708
Ntrneq =
        1416
H =
    10
Hub =
   117
Nw =
   122
Ntrials =
    10
j =
     0
j =
     1
h =
    12
Nw =
   146
Ndof =
        1270
j =
     2
h =
    59
Nw =
   710
Ndof =
   706
j =
     3
h =
   117
Nw =
        1406
Ndof =
    10
PctErr =
   41.2055   37.5494   34.0909
   46.3439   42.8854   43.0830
   38.9328   35.8696   37.2530
   41.4032   35.3755   37.5494
   37.6482   42.5889   34.4862
   41.6008   40.5138   32.8063
   38.2411   41.6008   33.9921
   38.0435   34.7826   37.0553
   39.1304   37.0553   38.5375
   38.0435   34.8814   35.5731
0 个评论
采纳的回答
  Greg Heath
      
      
 2017-6-15
        It is considered ill-mannered to post the same problem in both
 NEWSGROUP and ANSWERS
See my answer in the NEWSGROUP
Greg
0 个评论
更多回答(0 个)
另请参阅
类别
				在 Help Center 和 File Exchange 中查找有关 Deep Learning Toolbox 的更多信息
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

