Create custom NARX net
1 次查看(过去 30 天)
显示 更早的评论
Hi,
I'm strugglinng to create a series parallel architecture net(Pic1). I want to use this architecture to train my net.
Could somebody tell me how I can connect the ouptut to the first layer? Aferwards I'd like to use this net:
CODE (Pic2)
BattCurrent = Experiment.Results(1).BattCurrent__A_;
CellVolt = Experiment.Results(1).CellVolt__V_;
SOC = Experiment.Results(1).SOC__0_1_;
CellTemperature = Experiment.Results(1).CellTemperature__K_;
NumberOfChargeProcedures = Experiment.Results(1).NumberOfChargeProcedures____;
AgeingCapacity = Experiment.Results(1).AgeingCapacity;
% Input Vektor X
X = [BattCurrent CellVolt SOC CellTemperature NumberOfChargeProcedures]';
%X = con2seq(X);
%Output Vektor T
T = [AgeingCapacity]';
%T = con2seq(T);
[Xn,Xs] = mapminmax(X);
[Tn,Ts] = mapminmax(T);
% ANN
net = network;
net.name = 'Test';
net.numInputs = 1;
net.numLayers = 3;
net.biasConnect = [1; 1; 1];
net.inputConnect(1,1) = 1;
net.layerConnect(2,1) =1;
net.layerConnect(3,2) =1;
net.layerConnect(1,3) =1;
net.outputConnect(1,3) = 1;
%Layers
net.layers{1}.size = 15;
net.layers{1}.transferFcn = 'tansig';
net.layers{1}.initFcn = 'initnw';
net.layers{1}.name = 'Hidden Layer 1';
net.layers{2}.size = 15;
net.layers{2}.transferFcn = 'tansig';
net.layers{2}.initFcn = 'initnw';
net.layers{2}.name = 'Hidden Layer 2';
net.layers{3}.size = 1;
net.layers{3}.transferFcn = 'purelin';
net.layers{3}.initFcn = 'initnw';
net.layers{3}.name = 'Output';
%NARX
net.layerWeights{1,3}.delays = [1];
%Functions
net.initFcn = 'initlay';
net.performFcn = 'mse';
net.trainFcn = 'trainbr';
net.divideFcn = 'dividerand';
%Plots
net.plotFcns = {'plotperform','plottrainstate'};
view(net)
Thank you in advance! Best, Stefan
0 个评论
回答(2 个)
Jayaram Theegala
2017-6-19
You can use "closeloop" function to connect output to the first layer, in other words to convert a neural network into a closed loop network. For more information about this function, click on the following URL:
After creating the above closed loop network, you can create a feed forward network using the "feedforwardnet" function, and to find more information about this function click on the following MATLAB documentation page:
0 个评论
Greg Heath
2017-6-20
See the documentation examples
help narxnet
doc narxnet
The only significant difference between your design and the documentation examples is that you have 2 hidden layers
However
1. Use DIVIDEBLOCK for training
Hope this helps.
Greg
0 个评论
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Sequence and Numeric Feature Data Workflows 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!