Iteration determine in Self-Organizing Map to Cluster Data

1 次查看(过去 30 天)
in the attach i share an example of Self-Organizing Map that provided by MATLAB my problem is that the iteration number is fixed in 200. change it with other value like 150, 100, 500..
Regards
  1 个评论
Qichen Deng
Qichen Deng 2022-4-6
Could it be net.trainParam.epochs?
"epochs is maximum number of training iterations before training is stopped."
net.trainParam.epochs = some number
will change the number of training iterations

请先登录,再进行评论。

采纳的回答

Greg Heath
Greg Heath 2017-6-29
Type, without ending semicolon
net = net
then all properties will be displayed.
Chose the one that corresponds to iteration number.
Then change it.
Something along the lines of
net.property.iteration number = 100.
to change 200 to 100.
Hope this helps.
Thank you for formally accepting my answer
Greg

更多回答(1 个)

ahmad karim
ahmad karim 2017-6-29
Thanks alot sir, but when i type net=net. the informations that listed below are displayed bu there is not any information about iterartion. net =
Neural Network
name: 'Self-Organizing Map'
userdata: (your custom info)
dimensions:
numInputs: 1
numLayers: 1
numOutputs: 1
numInputDelays: 0
numLayerDelays: 0
numFeedbackDelays: 0
numWeightElements: 4800
sampleTime: 1
connections:
biasConnect: false
inputConnect: true
layerConnect: false
outputConnect: true
subobjects:
input: Equivalent to inputs{1}
output: Equivalent to outputs{1}
inputs: {1x1 cell array of 1 input}
layers: {1x1 cell array of 1 layer}
outputs: {1x1 cell array of 1 output}
biases: {1x1 cell array of 0 biases}
inputWeights: {1x1 cell array of 1 weight}
layerWeights: {1x1 cell array of 0 weights}
functions:
adaptFcn: 'adaptwb'
adaptParam: (none)
derivFcn: 'defaultderiv'
divideFcn: (none)
divideParam: (none)
divideMode: 'sample'
initFcn: 'initlay'
performFcn: 'mse'
performParam: .regularization, .normalization
plotFcns: {'plotsomtop', plotsomnc, plotsomnd,
plotsomplanes, plotsomhits, plotsompos}
plotParams: {1x6 cell array of 6 params}
trainFcn: 'trainbu'
trainParam: .showWindow, .showCommandLine, .show, .epochs,
.time
weight and bias values:
IW: {1x1 cell} containing 1 input weight matrix
LW: {1x1 cell} containing 0 layer weight matrices
b: {1x1 cell} containing 0 bias vectors
methods:
adapt: Learn while in continuous use
configure: Configure inputs & outputs
gensim: Generate Simulink model
init: Initialize weights & biases
perform: Calculate performance
sim: Evaluate network outputs given inputs
train: Train network with examples
view: View diagram
unconfigure: Unconfigure inputs & outputs

类别

Help CenterFile Exchange 中查找有关 Sequence and Numeric Feature Data Workflows 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by