Why are my eigenvalues complex? (eig)

21 次查看(过去 30 天)
I wanted to find and plot the eigenvalues of large matrices (around1000x1000). But discovered when using the eig function, it gives complex eigenvalues when it shouldn't. In the code below I have a Tridiagonal Toeplitz matrix which should have all real eigenvalues. Tridiagonal Toeplitz
But it seems eig is unstable for n=90 and returns a small complex error in a few of the eigenvalues. Is there a way I can get the eigenvalues more accurately?
clear parameters
close all
clc
n=90;
dd=-2.*ones(n,1);
ud=1.8*ones(n,1);
ld=.1*ones(n,1);
A = spdiags([ld dd ud],-1:1,n,n);
C=full(A);
g=eig(C);
g=sort(g);
cond(C)
plot(g,'.')
Any help would be appreciated.

回答(1 个)

Christine Tobler
Christine Tobler 2017-9-1
The eigenvalues of a real matrix are only real if the matrix is symmetric. The matrix C is not symmetric, therefore the eigenvalues are either real or complex conjugate pairs.
  4 个评论
Bruno Luong
Bruno Luong 2021-2-2
Geert Awater comment deserves to be on a separate answer (and accepted)
Bruno Luong
Bruno Luong 2021-2-2
编辑:Bruno Luong 2021-2-2
The condition number of A is not relevant in eigenvalue computation, what is more relevant is the condition number of the eigen-vectors matrix.
When they are large; the eigen spaces are almost parallel and it causes numerical algoritm to fail. The similarity transformation is the excellent trick to improve the conditioning without changing the eigen-values.
n=90;
dd=-2.*ones(n,1);
ud=1.8*ones(n,1);
ld=.1*ones(n,1);
A = spdiags([ld dd ud],-1:1,n,n);
[V,g]=eig(full(A));
cond(V) % 1.4975e+53
D=spdiags([sqrt(ld.*ud) dd sqrt(ld.*ud)],-1:1,n,n);
[W, g]=eig(full(D));
cond(W) % 1.0000

请先登录,再进行评论。

类别

Help CenterFile Exchange 中查找有关 Linear Algebra 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by