I have a coupled second order DE; how to solve them with boundary conditions; How to get get F1 and F2

3 次查看(过去 30 天)
equation 1: d^2f1/dx^2-Q/K1*F1+P/K1=0
equation 2 d^2f2/dx^2-Q/K1*F2+P/K2=0 Boundary conditions F1(0)=0 F2(l)=P F1(l-u)=F2(l-u) dF1/dx(l-u)=dF2/dx(l-u) PS All variables l, u, P,Q and K1 are known

回答(1 个)

Torsten
Torsten 2017-9-28
Use "bvp4c" with the "multipoint boundary value problem" facility:
https://de.mathworks.com/help/matlab/ref/bvp4c.html#bt5uooc-23
https://de.mathworks.com/help/matlab/math/boundary-value-problems.html#brfhdsd-1
Best wishes
Torsten.
  2 个评论
Torsten
Torsten 2017-10-2
编辑:Torsten 2017-10-2
function dydx = f(x,y,region)
P = ...;
Q = ...;
K1 = ...;
K2 = ...;
dydx = zeros(2,1);
dydx(1) = y(2);
% The definition of dydx(2) depends on the region.
switch region
case 1 % x in [0 l-u]
dydx(2) = y(1)*Q/K1-P/K1
case 2 % x in [l-u l]
dydx(2) = y(1)*Q/K1-P/K2;
end
function res = bc(YL,YR)
P=...;
res = [YL(1,1) % y(0) = 0
YR(1,1) - YL(1,2) % Continuity of F(x) at x=l-u
YR(2,1) - YL(2,2) % Continuity of dF/dx at x=l-u
YR(1,end) - P]; % y(l) = P
You should be able to add initial conditions and call "bvp4c" following the example in my above link.
Of course, you will have to give values to the parameters used in the function routines.
Best wishes
Torsten.

请先登录,再进行评论。

类别

Help CenterFile Exchange 中查找有关 Boundary Value Problems 的更多信息

产品

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by