Solving Lorenz attractor equations using Runge kutta (RK4) method

49 次查看(过去 30 天)
I am trying to write a code for the simulation of lorenz attractor using rk4 method. Here is the code:
clc;
clear all;
t(1)=0; %initializing x,y,z,t
x(1)=1;
y(1)=1;
z(1)=1;
sigma=10; %value of constants
rho=28;
beta=(8/3);
h=0.1; %step size
t=0:h:100;
f=@(t,x,y,z) sigma*(y-x); %ode
g=@(t,x,y,z) x*rho-x.*z-y;
p=@(t,x,y,z) x.*y-beta*z;
for i=1:(length(t)-1) %loop
k1=h*f(t(i),x(i),y(i),z(i));
l1=h*g(t(i),x(i),y(i),z(i));
m1=h*p(t(i),x(i),y(i),z(i));
k2=h*f(t(i)+h,(x(i)+0.5*k1),(y(i)+(0.5*l1)),(z(i)+(0.5*m1)));
l2=h*f(t(i)+h,(x(i)+0.5*k1),(y(i)+(0.5*l1)),(z(i)+(0.5*m1)));
m2=h*f(t(i)+h,(x(i)+0.5*k1),(y(i)+(0.5*l1)),(z(i)+(0.5*m1)));
k3=h*f(t(i)+h,(x(i)+0.5*k2),(y(i)+(0.5*l2)),(z(i)+(0.5*m2)));
l3=h*f(t(i)+h,(x(i)+0.5*k2),(y(i)+(0.5*l2)),(z(i)+(0.5*m2)));
m3=h*f(t(i)+h,(x(i)+0.5*k2),(y(i)+(0.5*l2)),(z(i)+(0.5*m2)));
k4=h*f(t(i)+h,(x(i)+k3),(y(i)+l3),(z(i)+m3));
l4=h*g(t(i)+h,(x(i)+k3),(y(i)+l3),(z(i)+m3));
m4=h*p(t(i)+h,(x(i)+k3),(y(i)+l3),(z(i)+m3));
x(i+1)=x(i)+h*(1/6)*(k1+2*k2+2*k3+k4); %final equations
y(i+1)=y(i)+h*(1/6)*(k1+2*k2+2*k3+k4);
z(i+1)=z(i)+h*(1/6)*(m1+2*m2+2*m3+m4);
end
plot3(x,y,z)
But the solutions are not right. I don't know what to do. I know we can do using ode solvers but i wanted to do using rk4 method. I searched for the solutions in different sites but i didn't find many using rk4. While there were some but only algorithm. I tried to compare my solutions with ode45 but doesn't match at all. it's totally different.

采纳的回答

Mischa Kim
Mischa Kim 2017-10-11
The only bug that I can see at first glance is here
y(i+1) = y(i) + h*(1/6)*(l1+2*l2+2*l3+l4); % replace ki by li
You also might want to play with (decrease) the step size.
  5 个评论
reema shrestha
reema shrestha 2017-10-12
Wow! Thanks alot. This is beautiful. I wonder why it didn't it worked with mine. Have to learn alot. :)

请先登录,再进行评论。

更多回答(1 个)

tyfcwgl
tyfcwgl 2017-10-29
I think there are many bugs in your code. After my modifying, it works well. the code and result are below.
clc;
clear all;
t(1)=0; %initializing x,y,z,t
x(1)=1;
y(1)=1;
z(1)=1;
sigma=10; %value of constants
rho=28;
beta=(8.0/3.0);
h=0.01; %step size
t=0:h:20;
f=@(t,x,y,z) sigma*(y-x); %ode
g=@(t,x,y,z) x*rho-x.*z-y;
p=@(t,x,y,z) x.*y-beta*z;
for i=1:(length(t)-1) %loop
k1=f(t(i),x(i),y(i),z(i));
l1=g(t(i),x(i),y(i),z(i));
m1=p(t(i),x(i),y(i),z(i));
k2=f(t(i)+h/2,(x(i)+0.5*k1*h),(y(i)+(0.5*l1*h)),(z(i)+(0.5*m1*h)));
l2=g(t(i)+h/2,(x(i)+0.5*k1*h),(y(i)+(0.5*l1*h)),(z(i)+(0.5*m1*h)));
m2=p(t(i)+h/2,(x(i)+0.5*k1*h),(y(i)+(0.5*l1*h)),(z(i)+(0.5*m1*h)));
k3=f(t(i)+h/2,(x(i)+0.5*k2*h),(y(i)+(0.5*l2*h)),(z(i)+(0.5*m2*h)));
l3=g(t(i)+h/2,(x(i)+0.5*k2*h),(y(i)+(0.5*l2*h)),(z(i)+(0.5*m2*h)));
m3=p(t(i)+h/2,(x(i)+0.5*k2*h),(y(i)+(0.5*l2*h)),(z(i)+(0.5*m2*h)));
k4=f(t(i)+h,(x(i)+k3*h),(y(i)+l3*h),(z(i)+m3*h));
l4=g(t(i)+h,(x(i)+k3*h),(y(i)+l3*h),(z(i)+m3*h));
m4=p(t(i)+h,(x(i)+k3*h),(y(i)+l3*h),(z(i)+m3*h));
x(i+1) = x(i) + h*(k1 +2*k2 +2*k3 +k4)/6; %final equations
y(i+1) = y(i) + h*(l1 +2*l2 +2*l3 +l4)/6;
z(i+1) = z(i) + h*(m1+2*m2 +2*m3 +m4)/6;
end
plot3(x,y,z)

类别

Help CenterFile Exchange 中查找有关 Programming 的更多信息

标签

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by