Using ODE45 to solve 2 dependent ODE: dX/dt (mass transfer) and dT/dt (heat transfer) of a particle during fluidized bed drying process.
15 次查看(过去 30 天)
显示 更早的评论
My problem is using ODE45 to solve simultaneously the two differential equations of heat and mass transfer of a particle during fluidized bed drying process. ODE1: Equation of mass transfer:
dX/dt = -hm*A*(Ye-Yinf)*Rhoda/M
ODE2: Equation of heat transfer:
dT/dt = (h*A*(Tinf-T)+M*(lath-Cpw*T)*(dX/dt))/(M*(Cpw*X+Cps))
where:
M = 0.05; % weight of dry matter of particle, [kg]
hm = 0.02; % velocity of surrounding air, [m/s]
A = 1e-4; % surface area of particle, [m2]
Ye = 0.3; % equilibrium moisture content of air at surface of particle, based on dry air, [kg H2O/kg dry air]
Yinf = 0.05; % moisture content of air based on dry air, [kg H2O/kg dry air]
Rhoda = 1.2; % density of air, [kg/m3]
h = 350; % convective heat transfer coefficient, [W/m2.K]
Tinf = 80; % temperature of air using for drying, [degC]
lath = 2260000, % latent heat of water, [J/kg]
Cpw = 4200; % specific heat of water, [J/kg.K]
Cps = 1700; % specific heat of air, [J/kg.K]
X0 = 0.5; % initial moisture content of particle, in dry basis, fraction
T0 = 20; % initial temperature of particle, [degC]
0 个评论
回答(2 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 General PDEs 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!