Incorrect Neural Network output calculation through weights! Help!
3 次查看(过去 30 天)
显示 更早的评论
Hi guys, I confront a problem calculating Neural Network Outputs manually through weights.
The NN has the below specifications:
Input Size 7
1 Hidden Layer of Size 10
Output Size 10
I trained the network train(network,Inputs,Targets) with trainFcn = 'trainlm' and network.layers{1}.transferFcn = 'satlins'. Others defaults.
After training I extracted the weights with the commands below:
b1 = cell2mat(network.b(1)); %Table size 10x1
IW = cell2mat(network.IW); %Table size 10x7
b2 = cell2mat(network.b(2)); %Table size 10x1
LW = cell2mat(network.LW); %Table size 10x10
but when I tried for an input X=[1,1,1,1,1,1,1]':
out1 = purelin( LW * (satlins(IW * X + b1)) + b2 );
out2=network(X);
I took different results out1~=out2.
I have searched similar problems but I cannot adapt them to my problem. Could you help me? Thanks.
0 个评论
采纳的回答
Greg Heath
2017-10-23
You did not take into account the default mapminmax normalization of inputs and outputs.
Hope this helps.
Thank you for formally accepting my answer
Greg
更多回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Deep Learning Toolbox 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!