Solve IVP with modified Euler's method

14 次查看(过去 30 天)
I am trying to solve the initial value problem x'(t) = t/(1+x^2) with x(0) = 0 and 0 <= t <= 5 using modified Euler's method with 10 steps however I am not too sure about my code can anyone double check/provide a more efficient code? thanks in advance
function [T,Y] = euler_modified(f,a,b,ya,m)
h = (b - a)/m;
T = zeros(1,m+1);
Y = zeros(1,m+1);
T(1) = a;
Y(1) = ya;
for j=1:m,
Y(j+1) = Y(j) + h*feval(f,T(j) + h/2,Y(j) + h*feval(f,T(j),Y(j)));
T(j+1) = a + h*j;
end
  1 个评论
John D'Errico
John D'Errico 2017-11-13
Why do you care if the code is not as efficient as you wish? This is homework, as otherwise, you would not want to use Euler's method in any form. If not homework, then there are batter methods to solve an ODE, and they are already written. NEVER write code when professionally written code is given to you as part of the language itself.

请先登录,再进行评论。

回答(2 个)

ali alnashri
ali alnashri 2021-4-14
function [T,Y] = euler_modified(f,a,b,ya,m)
h = (b - a)/m;
T = zeros(1,m+1);
Y = zeros(1,m+1);
T(1) = a;
Y(1) = ya;
for j=1:m,
Y(j+1) = Y(j) + h*feval(f,T(j) + h/2,Y(j) + h*feval(f,T(j),Y(j)));
T(j+1) = a + h*j;
end

My Anh Vu
My Anh Vu 2023-4-1
Y(j+1) = Y(j) + h*feval(f,T(j) + h/2,Y(j) + h*feval(f,T(j),Y(j)));
should be Y(j+1) = Y(j) + h*feval(f,T(j) + h/2,Y(j) + h/2*feval(f,T(j),Y(j)));
Good luck!

类别

Help CenterFile Exchange 中查找有关 Ordinary Differential Equations 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by