Approximation not falls within the expected range
1 次查看(过去 30 天)
显示 更早的评论
Here's my script:
n=1;
while abs(pi-sum(4./((2*(1:n)-1).*(-1).^((1:n)+1))))>0.001
n=n+1;
end
fprintf('The approximation using Leibniz''s formula falls within 0,001 of pi when it equals to\n')
fprintf('%.9f with n equls %d\n\n',sum(4./((2*(1:n)-1).*(-1).^((1:n)+1))),n)
end
As shown, I try to make the result falls within 0.001 of pi, however, I get n=1000 an approximation equals 3.140592654.
My friend gets n=2002, so is mine wrong?
Thank you!
0 个评论
回答(1 个)
ag
2024-12-4
Hi Zhuoying,
I kindly suggest you to refer the following MathWorks file exchange page, which demonstrates implementation of the Leibniz formula: Approximation of Pi - https://www.mathworks.com/matlabcentral/fileexchange/102659-approximation-of-pi-leibniz-formula
You can find the code on the "Functions" tab.
Hope this helps!
0 个评论
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Loops and Conditional Statements 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!